Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import gradio as gr | |
import spaces | |
import torch | |
from diffusers import AutoPipelineForText2Image | |
from loguru import logger | |
SUPPORTED_MODELS = [ | |
"stabilityai/sdxl-turbo", | |
"stabilityai/stable-diffusion-3-medium-diffusers", | |
"stabilityai/stable-diffusion-xl-base-1.0", | |
] | |
DEFAULT_MODEL = "stabilityai/stable-diffusion-xl-base-1.0" | |
model = os.environ.get("MODEL_ID", DEFAULT_MODEL) | |
gpu_duration = int(os.environ.get("GPU_DURATION", 60)) | |
def load_pipeline(model): | |
return AutoPipelineForText2Image.from_pretrained( | |
model, torch_dtype=torch.float16, use_safetensors=True, variant="fp16" | |
) | |
logger.debug(f"Loading pipeline: {dict(model=model)}") | |
pipe = load_pipeline(model).to("cuda") | |
def infer( | |
prompt: str, | |
negative_prompt: str | None, | |
num_inference_steps: int, | |
guidance_scale: float, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
logger.info(f"Starting image generation: {dict(model=model, prompt=prompt)}") | |
additional_args = { | |
k: v | |
for k, v in dict( | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
).items() | |
if v | |
} | |
logger.debug(f"Generating image: {dict(prompt=prompt, **additional_args)}") | |
images = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
**additional_args, | |
).images | |
return images[0] | |
with gr.Blocks() as demo: | |
with gr.Column(): | |
gr.Markdown("# Text-to-Image") | |
gr.Markdown(f"## Model: `{model}`") | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0, variant="primary") | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
) | |
with gr.Row(): | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=0, | |
maximum=100, | |
step=1, | |
value=0, | |
) | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=100.0, | |
step=0.1, | |
value=0.0, | |
) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn=infer, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
num_inference_steps, | |
guidance_scale, | |
], | |
outputs=[result], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |