Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -15,10 +15,7 @@ DEFAULT_MODEL = "stabilityai/stable-diffusion-xl-base-1.0"
|
|
15 |
|
16 |
def load_pipeline(model):
|
17 |
return DiffusionPipeline.from_pretrained(
|
18 |
-
model,
|
19 |
-
torch_dtype=torch.float16,
|
20 |
-
use_safetensors=True,
|
21 |
-
variant="fp16"
|
22 |
)
|
23 |
|
24 |
|
@@ -29,12 +26,17 @@ loaded_models = {DEFAULT_MODEL}
|
|
29 |
def generate_image(
|
30 |
model: str,
|
31 |
prompt: str,
|
|
|
|
|
|
|
32 |
progress,
|
33 |
):
|
34 |
logger.debug(f"Loading pipeline: {dict(model=model)}")
|
35 |
pipe = load_pipeline(model).to("cuda")
|
36 |
|
37 |
-
logger.debug(
|
|
|
|
|
38 |
|
39 |
def progress_callback(pipe, step_index, timestep, callback_kwargs):
|
40 |
logger.trace(
|
@@ -45,6 +47,9 @@ def generate_image(
|
|
45 |
|
46 |
images = pipe(
|
47 |
prompt=prompt,
|
|
|
|
|
|
|
48 |
callback_on_step_end=progress_callback,
|
49 |
).images
|
50 |
return images[0]
|
@@ -59,10 +64,13 @@ def gpu(*args, **kwargs):
|
|
59 |
def generate(
|
60 |
model: str,
|
61 |
prompt: str,
|
|
|
|
|
|
|
62 |
progress=gr.Progress(),
|
63 |
):
|
64 |
logger.info(
|
65 |
-
f"Starting image generation: {dict(model=model, prompt=prompt)}"
|
66 |
)
|
67 |
|
68 |
# Cache the model files for the pipeline
|
@@ -72,7 +80,9 @@ def generate(
|
|
72 |
load_pipeline(model)
|
73 |
loaded_models.add(model)
|
74 |
|
75 |
-
return gpu(
|
|
|
|
|
76 |
|
77 |
|
78 |
demo = gr.Interface(
|
@@ -82,8 +92,11 @@ demo = gr.Interface(
|
|
82 |
label="Model", choices=models, value=DEFAULT_MODEL, allow_custom_value=True
|
83 |
),
|
84 |
gr.Text(label="Prompt"),
|
|
|
|
|
|
|
85 |
],
|
86 |
outputs=[gr.Image(label="Output")],
|
87 |
)
|
88 |
|
89 |
-
demo.launch()
|
|
|
15 |
|
16 |
def load_pipeline(model):
|
17 |
return DiffusionPipeline.from_pretrained(
|
18 |
+
model, torch_dtype=torch.float16, use_safetensors=True, variant="fp16"
|
|
|
|
|
|
|
19 |
)
|
20 |
|
21 |
|
|
|
26 |
def generate_image(
|
27 |
model: str,
|
28 |
prompt: str,
|
29 |
+
negative_prompt: str,
|
30 |
+
num_inference_steps: int,
|
31 |
+
guidance_scale: float,
|
32 |
progress,
|
33 |
):
|
34 |
logger.debug(f"Loading pipeline: {dict(model=model)}")
|
35 |
pipe = load_pipeline(model).to("cuda")
|
36 |
|
37 |
+
logger.debug(
|
38 |
+
f"Generating image: {dict(prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale)}"
|
39 |
+
)
|
40 |
|
41 |
def progress_callback(pipe, step_index, timestep, callback_kwargs):
|
42 |
logger.trace(
|
|
|
47 |
|
48 |
images = pipe(
|
49 |
prompt=prompt,
|
50 |
+
negative_prompt=negative_prompt,
|
51 |
+
num_inference_steps=num_inference_steps,
|
52 |
+
guidance_scale=guidance_scale,
|
53 |
callback_on_step_end=progress_callback,
|
54 |
).images
|
55 |
return images[0]
|
|
|
64 |
def generate(
|
65 |
model: str,
|
66 |
prompt: str,
|
67 |
+
negative_prompt: str,
|
68 |
+
num_inference_steps: int,
|
69 |
+
guidance_scale: float,
|
70 |
progress=gr.Progress(),
|
71 |
):
|
72 |
logger.info(
|
73 |
+
f"Starting image generation: {dict(model=model, prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale)}"
|
74 |
)
|
75 |
|
76 |
# Cache the model files for the pipeline
|
|
|
80 |
load_pipeline(model)
|
81 |
loaded_models.add(model)
|
82 |
|
83 |
+
return gpu(
|
84 |
+
model, prompt, negative_prompt, num_inference_steps, guidance_scale, progress
|
85 |
+
)
|
86 |
|
87 |
|
88 |
demo = gr.Interface(
|
|
|
92 |
label="Model", choices=models, value=DEFAULT_MODEL, allow_custom_value=True
|
93 |
),
|
94 |
gr.Text(label="Prompt"),
|
95 |
+
gr.Text(label="Ngeative Prompt"),
|
96 |
+
gr.Slider(label="Num Inference Steps", minimum=0, maximum=200, value=50),
|
97 |
+
gr.Slider(label="Guidance Scale", minimum=0.0, maximum=300.0, value=7.5),
|
98 |
],
|
99 |
outputs=[gr.Image(label="Output")],
|
100 |
)
|
101 |
|
102 |
+
demo.launch()
|