dhairyashah's picture
Update app.py
ef4c75d verified
import tqdm
from PIL import Image
import hashlib
import torch
import fitz
import gradio as gr
import os
from transformers import AutoModel, AutoTokenizer
import numpy as np
import json
import spaces
cache_dir = 'kb_cache'
os.makedirs(cache_dir, exist_ok=True)
def get_image_md5(img: Image.Image):
img_byte_array = img.tobytes()
hash_md5 = hashlib.md5()
hash_md5.update(img_byte_array)
hex_digest = hash_md5.hexdigest()
return hex_digest
def calculate_md5_from_binary(binary_data):
hash_md5 = hashlib.md5()
hash_md5.update(binary_data)
return hash_md5.hexdigest()
@spaces.GPU(duration=100)
def add_pdf_gradio(pdf_file_binary, progress=gr.Progress()):
if pdf_file_binary is None:
return "No PDF file uploaded."
global model, tokenizer
model.eval()
knowledge_base_name = calculate_md5_from_binary(pdf_file_binary)
this_cache_dir = os.path.join(cache_dir, knowledge_base_name)
os.makedirs(this_cache_dir, exist_ok=True)
with open(os.path.join(this_cache_dir, f"src.pdf"), 'wb') as file:
file.write(pdf_file_binary)
dpi = 200
doc = fitz.open("pdf", pdf_file_binary)
reps_list = []
images = []
image_md5s = []
for page in progress.tqdm(doc):
pix = page.get_pixmap(dpi=dpi)
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
image_md5 = get_image_md5(image)
image_md5s.append(image_md5)
with torch.no_grad():
reps = model(text=[''], image=[image], tokenizer=tokenizer).reps
reps_list.append(reps.squeeze(0).cpu().numpy())
images.append(image)
for idx in range(len(images)):
image = images[idx]
image_md5 = image_md5s[idx]
cache_image_path = os.path.join(this_cache_dir, f"{image_md5}.png")
image.save(cache_image_path)
np.save(os.path.join(this_cache_dir, f"reps.npy"), reps_list)
with open(os.path.join(this_cache_dir, f"md5s.txt"), 'w') as f:
for item in image_md5s:
f.write(item+'\n')
return "PDF processed successfully!"
def retrieve_gradio(pdf_file_binary, query: str, topk: int):
global model, tokenizer
model.eval()
if pdf_file_binary is None:
return "No PDF file uploaded."
knowledge_base_name = calculate_md5_from_binary(pdf_file_binary)
target_cache_dir = os.path.join(cache_dir, knowledge_base_name)
if not os.path.exists(target_cache_dir):
return None
md5s = []
with open(os.path.join(target_cache_dir, f"md5s.txt"), 'r') as f:
for line in f:
md5s.append(line.rstrip('\n'))
doc_reps = np.load(os.path.join(target_cache_dir, f"reps.npy"))
query_with_instruction = "Represent this query for retrieving relevant document: " + query
with torch.no_grad():
query_rep = model(text=[query_with_instruction], image=[None], tokenizer=tokenizer).reps.squeeze(0).cpu()
query_md5 = hashlib.md5(query.encode()).hexdigest()
doc_reps_cat = torch.stack([torch.Tensor(i) for i in doc_reps], dim=0)
similarities = torch.matmul(query_rep, doc_reps_cat.T)
topk_values, topk_doc_ids = torch.topk(similarities, k=topk)
images_topk = [Image.open(os.path.join(target_cache_dir, f"{md5s[idx]}.png")) for idx in topk_doc_ids.cpu().numpy()]
return images_topk
with gr.Blocks() as app:
gr.Markdown("# MiniCPMV-RAG-PDFQA")
with gr.Row():
file_input = gr.File(type="binary", label="Upload PDF")
process_button = gr.Button("Process PDF")
process_button.click(add_pdf_gradio, inputs=[file_input], outputs="text")
with gr.Row():
query_input = gr.Text(label="Your Question")
topk_input = gr.Number(value=5, minimum=1, maximum=10, step=1, label="Number of pages to retrieve")
retrieve_button = gr.Button("Retrieve Pages")
images_output = gr.Gallery(label="Retrieved Pages")
retrieve_button.click(retrieve_gradio, inputs=[file_input, query_input, topk_input], outputs=images_output)
app.launch(share=True)