dhanushreddy29
commited on
Commit
•
62a39be
1
Parent(s):
b2868e0
Upload folder using huggingface_hub
Browse files
app.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import requests
|
4 |
+
from PIL import Image
|
5 |
+
from io import BytesIO
|
6 |
+
from base64 import b64encode
|
7 |
+
|
8 |
+
SEGMIND_MODEL_URL = "https://api.segmind.com/v1/inpaint-auto"
|
9 |
+
|
10 |
+
def urlToB64(imgUrl):
|
11 |
+
return str(b64encode(requests.get(imgUrl).content))[2:-1]
|
12 |
+
|
13 |
+
def imageToB64(img):
|
14 |
+
buffered = BytesIO()
|
15 |
+
img.save(buffered, format="JPEG")
|
16 |
+
return str(b64encode(buffered.getvalue()))[2:-1]
|
17 |
+
|
18 |
+
def generate_image(
|
19 |
+
upload_method,
|
20 |
+
img_url,
|
21 |
+
uploaded_img,
|
22 |
+
prompt,
|
23 |
+
negative_prompt,
|
24 |
+
cn_model,
|
25 |
+
cn_processor,
|
26 |
+
base_model
|
27 |
+
):
|
28 |
+
if upload_method == "URL":
|
29 |
+
if not img_url:
|
30 |
+
raise ValueError("Image URL is required.")
|
31 |
+
img_b64 = urlToB64(img_url)
|
32 |
+
else:
|
33 |
+
if not uploaded_img:
|
34 |
+
raise ValueError("Image upload is required.")
|
35 |
+
img_b64 = imageToB64(uploaded_img)
|
36 |
+
|
37 |
+
data = {
|
38 |
+
"image": img_b64,
|
39 |
+
"prompt": prompt,
|
40 |
+
"negative_prompt": negative_prompt,
|
41 |
+
"samples": 1,
|
42 |
+
"base_model": base_model,
|
43 |
+
"cn_model": cn_model,
|
44 |
+
"cn_processor": cn_processor,
|
45 |
+
"scheduler": "DPM++ 2M SDE Karras",
|
46 |
+
"num_inference_steps": 25,
|
47 |
+
"guidance_scale": 7.5,
|
48 |
+
"seed": -1,
|
49 |
+
"strength": 0.9,
|
50 |
+
"base64": False,
|
51 |
+
}
|
52 |
+
response = requests.post(
|
53 |
+
SEGMIND_MODEL_URL,
|
54 |
+
json=data,
|
55 |
+
headers={"x-api-key": os.environ['SEGMIND_API_KEY']}
|
56 |
+
)
|
57 |
+
output_img = Image.open(BytesIO(response.content))
|
58 |
+
|
59 |
+
return output_img
|
60 |
+
|
61 |
+
|
62 |
+
def invertBox(upload_method):
|
63 |
+
# Return gr.update objects with visibility settings
|
64 |
+
if upload_method == "URL":
|
65 |
+
return gr.update(visible=True), gr.update(visible=False)
|
66 |
+
else:
|
67 |
+
return gr.update(visible=False), gr.update(visible=True)
|
68 |
+
|
69 |
+
with gr.Blocks() as demo:
|
70 |
+
gr.Markdown("### Photo Background Changer")
|
71 |
+
gr.Markdown(
|
72 |
+
"Change the bavkground of the image in one click to anything that you can imagine"
|
73 |
+
)
|
74 |
+
with gr.Row():
|
75 |
+
upload_method = gr.Radio(
|
76 |
+
choices=["URL", "Upload"], label="Choose Image Upload Method", value="URL"
|
77 |
+
)
|
78 |
+
img_url = gr.Textbox(label="Image URL")
|
79 |
+
uploaded_img = gr.Image(type="pil", label="Upload Image", visible=False)
|
80 |
+
upload_method.change(
|
81 |
+
invertBox, inputs=upload_method, outputs=[img_url, uploaded_img]
|
82 |
+
)
|
83 |
+
with gr.Row():
|
84 |
+
prompt = gr.Textbox(label="Prompt")
|
85 |
+
negative_prompt = gr.Textbox(
|
86 |
+
label="Negative Prompt",
|
87 |
+
value="disfigured, deformed, ugly, floating in air, blur, haze, uneven edges, improper blending, animated, cartoon",
|
88 |
+
)
|
89 |
+
with gr.Row():
|
90 |
+
cn_model = gr.Dropdown(
|
91 |
+
label="Select Controlnet Model",
|
92 |
+
choices=["Canny", "Depth", "SoftEdge", "OpenPose"],
|
93 |
+
value="Depth",
|
94 |
+
)
|
95 |
+
cn_processor = gr.Dropdown(
|
96 |
+
label="Select Controlnet Processor",
|
97 |
+
choices=[
|
98 |
+
"canny",
|
99 |
+
"depth",
|
100 |
+
"depth_leres",
|
101 |
+
"depth_leres++",
|
102 |
+
"hed",
|
103 |
+
"hed_safe",
|
104 |
+
"mediapipe_face",
|
105 |
+
"mlsd",
|
106 |
+
"normal_map",
|
107 |
+
"openpose",
|
108 |
+
"openpose_hand",
|
109 |
+
"openpose_face",
|
110 |
+
"openpose_faceonly",
|
111 |
+
"openpose_full",
|
112 |
+
"dw_openpose_full",
|
113 |
+
"animal_openpose",
|
114 |
+
"clip_vision",
|
115 |
+
"revision_clipvision",
|
116 |
+
"revision_ignore_prompt",
|
117 |
+
"ip-adapter_clip_sd15",
|
118 |
+
"ip-adapter_clip_sdxl_plus_vith",
|
119 |
+
"ip-adapter_clip_sdxl",
|
120 |
+
"color",
|
121 |
+
"pidinet",
|
122 |
+
"pidinet_safe",
|
123 |
+
"pidinet_sketch",
|
124 |
+
"pidinet_scribble",
|
125 |
+
"scribble_xdog",
|
126 |
+
"scribble_hed",
|
127 |
+
"segmentation",
|
128 |
+
"threshold",
|
129 |
+
"depth_zoe",
|
130 |
+
"normal_bae",
|
131 |
+
"oneformer_coco",
|
132 |
+
"oneformer_ade20k",
|
133 |
+
"lineart",
|
134 |
+
"lineart_coarse",
|
135 |
+
"lineart_anime",
|
136 |
+
"lineart_standard",
|
137 |
+
"shuffle",
|
138 |
+
"tile_resample",
|
139 |
+
"invert",
|
140 |
+
"lineart_anime_denoise",
|
141 |
+
"reference_only",
|
142 |
+
"reference_adain",
|
143 |
+
"reference_adain+attn",
|
144 |
+
"inpaint",
|
145 |
+
"inpaint_only",
|
146 |
+
"inpaint_only+lama",
|
147 |
+
"tile_colorfix",
|
148 |
+
"tile_colorfix+sharp",
|
149 |
+
"recolor_luminance",
|
150 |
+
"recolor_intensity",
|
151 |
+
"blur_gaussian",
|
152 |
+
"anime_face_segment",
|
153 |
+
],
|
154 |
+
value="canny",
|
155 |
+
)
|
156 |
+
with gr.Row():
|
157 |
+
base_model = gr.Dropdown(
|
158 |
+
label="Select Base SD Model to use",
|
159 |
+
choices=["Real Vision XL", "SDXL", "Juggernaut XL", "DreamShaper XL"],
|
160 |
+
value="Juggernaut XL",
|
161 |
+
)
|
162 |
+
with gr.Row():
|
163 |
+
generate_btn = gr.Button("Generate Image")
|
164 |
+
output_image = gr.Image(type="pil")
|
165 |
+
|
166 |
+
generate_btn.click(
|
167 |
+
fn=generate_image,
|
168 |
+
inputs=[
|
169 |
+
upload_method,
|
170 |
+
img_url,
|
171 |
+
uploaded_img,
|
172 |
+
prompt,
|
173 |
+
negative_prompt,
|
174 |
+
cn_model,
|
175 |
+
cn_processor,
|
176 |
+
base_model
|
177 |
+
],
|
178 |
+
outputs=[output_image],
|
179 |
+
)
|
180 |
+
|
181 |
+
demo.launch(debug=True)
|