|
import cv2 |
|
from fastai.vision.all import * |
|
import numpy as np |
|
import gradio as gr |
|
from scipy import ndimage |
|
|
|
fnames = get_image_files("./albumentations/original") |
|
|
|
|
|
def label_func(fn): |
|
return "./albumentations/labelled/" f"{fn.stem}.png" |
|
|
|
|
|
codes = np.loadtxt("labels.txt", dtype=str) |
|
w, h = 768, 1152 |
|
img_size = (w, h) |
|
im_size = (h, w) |
|
|
|
dls = SegmentationDataLoaders.from_label_func( |
|
".", |
|
bs=3, |
|
fnames=fnames, |
|
label_func=label_func, |
|
codes=codes, |
|
item_tfms=Resize(img_size), |
|
) |
|
|
|
learn = unet_learner(dls, resnet34) |
|
learn.load("learn") |
|
|
|
|
|
def segmentImage(img_path): |
|
img = cv2.imread(img_path, 0) |
|
for i in range(img.shape[0]): |
|
for j in range(img.shape[1]): |
|
if img[i][j] > 0: |
|
img[i][j] = 1 |
|
kernel = np.ones((3, 3), np.uint8) |
|
|
|
|
|
img = ndimage.binary_fill_holes(img).astype(int) |
|
labels, nlabels = ndimage.label(img) |
|
|
|
|
|
sizes = ndimage.sum(img, labels, range(nlabels + 1)) |
|
scale_factor = 3072 / 1152 |
|
c = 0.4228320313 |
|
|
|
new_sizes = [size * scale_factor * scale_factor * c * c for size in sizes] |
|
|
|
new_sizes = [round(size, 2) for size in new_sizes] |
|
|
|
print("Sorted Areas = ", sorted(list(new_sizes))) |
|
print("Length = ", len(new_sizes)) |
|
gradient_img = np.zeros((img.shape[0], img.shape[1], 3), np.uint8) |
|
colors = [] |
|
for i in range(len(new_sizes)): |
|
if new_sizes[i] < 250 * c * c: |
|
colors.append((255, 255, 255)) |
|
elif new_sizes[i] < 7500 * c * c: |
|
colors.append((2, 106, 248)) |
|
elif new_sizes[i] < 20000 * c * c: |
|
colors.append((0, 255, 107)) |
|
elif new_sizes[i] < 45000 * c * c: |
|
colors.append((255, 201, 60)) |
|
else: |
|
colors.append((255, 0, 0)) |
|
for i in range(img.shape[0]): |
|
for j in range(img.shape[1]): |
|
if labels[i][j] != 0: |
|
gradient_img[i][j] = colors[labels[i][j]] |
|
Sum = 0 |
|
count = 0 |
|
for i in range(len(new_sizes)): |
|
if new_sizes[i] > 250 * c * c: |
|
Sum += new_sizes[i] |
|
count += 1 |
|
colors = np.random.randint(0, 255, (nlabels + 1, 3)) |
|
colors[0] = 0 |
|
img_color = colors[labels] |
|
return ( |
|
img_color, |
|
gradient_img, |
|
"Average Area of grains: " + str(Sum / count) + " µm^2", |
|
) |
|
|
|
|
|
def predict_segmentation(img): |
|
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) |
|
resized_img = cv2.resize(gray_img, im_size) |
|
pred = learn.predict(resized_img) |
|
scaled_pred = (pred[0].numpy() * 255).astype(np.uint8) |
|
output_image = PILImage.create(scaled_pred) |
|
|
|
temp_file = "temp.png" |
|
output_image.save(temp_file) |
|
|
|
segmented_image, gradient_image, avg_area = segmentImage(temp_file) |
|
return output_image, segmented_image, gradient_image, avg_area |
|
|
|
|
|
input_image = gr.inputs.Image() |
|
output_image1 = gr.outputs.Image(type="pil") |
|
output_image2 = gr.outputs.Image(type="pil") |
|
output_image3 = gr.outputs.Image(type="pil") |
|
output_image4 = gr.outputs.Textbox() |
|
app = gr.Interface( |
|
fn=predict_segmentation, |
|
inputs=input_image, |
|
outputs=[output_image1, output_image2, output_image3, output_image4], |
|
title="Microstructure Segmentation", |
|
description="Segment the input image into grain and background.", |
|
examples=["examples/inp1.png", "examples/inp2.png"] |
|
) |
|
app.launch() |
|
|