dhanushreddy29
commited on
Commit
•
a9d976a
1
Parent(s):
e79863e
Update app.py
Browse files
app.py
CHANGED
@@ -5,19 +5,29 @@ import gradio as gr
|
|
5 |
from scipy import ndimage
|
6 |
|
7 |
fnames = get_image_files("./albumentations/original")
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
10 |
w, h = 768, 1152
|
11 |
-
img_size = (w,h)
|
12 |
-
im_size = (h,w)
|
13 |
|
14 |
dls = SegmentationDataLoaders.from_label_func(
|
15 |
-
".",
|
16 |
-
|
|
|
|
|
|
|
|
|
17 |
)
|
18 |
|
19 |
learn = unet_learner(dls, resnet34)
|
20 |
-
learn.load(
|
|
|
21 |
|
22 |
def segmentImage(img_path):
|
23 |
img = cv2.imread(img_path, 0)
|
@@ -25,7 +35,7 @@ def segmentImage(img_path):
|
|
25 |
for j in range(img.shape[1]):
|
26 |
if img[i][j] > 0:
|
27 |
img[i][j] = 1
|
28 |
-
kernel = np.ones((3,3), np.uint8)
|
29 |
img = cv2.erode(img, kernel, iterations=1)
|
30 |
img = cv2.dilate(img, kernel, iterations=1)
|
31 |
img = ndimage.binary_fill_holes(img).astype(int)
|
@@ -56,10 +66,21 @@ def segmentImage(img_path):
|
|
56 |
for j in range(img.shape[1]):
|
57 |
if labels[i][j] != 0:
|
58 |
gradient_img[i][j] = colors[labels[i][j]]
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
colors = np.random.randint(0, 255, (nlabels + 1, 3))
|
60 |
colors[0] = 0
|
61 |
img_color = colors[labels]
|
62 |
-
return
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
def predict_segmentation(img):
|
65 |
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
@@ -68,14 +89,23 @@ def predict_segmentation(img):
|
|
68 |
scaled_pred = (pred[0].numpy() * 255).astype(np.uint8)
|
69 |
output_image = PILImage.create(scaled_pred)
|
70 |
# Save the image to a temporary file
|
71 |
-
temp_file =
|
72 |
output_image.save(temp_file)
|
73 |
# Call the segmentImage function
|
74 |
-
segmented_image, gradient_image = segmentImage(temp_file)
|
75 |
-
return output_image, segmented_image, gradient_image
|
|
|
76 |
|
77 |
input_image = gr.inputs.Image()
|
78 |
-
output_image1 = gr.outputs.Image(type=
|
79 |
-
output_image2 = gr.outputs.Image(type=
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
from scipy import ndimage
|
6 |
|
7 |
fnames = get_image_files("./albumentations/original")
|
8 |
+
|
9 |
+
|
10 |
+
def label_func(fn):
|
11 |
+
return "./albumentations/labelled/" f"{fn.stem}.png"
|
12 |
+
|
13 |
+
|
14 |
+
codes = np.loadtxt("labels.txt", dtype=str)
|
15 |
w, h = 768, 1152
|
16 |
+
img_size = (w, h)
|
17 |
+
im_size = (h, w)
|
18 |
|
19 |
dls = SegmentationDataLoaders.from_label_func(
|
20 |
+
".",
|
21 |
+
bs=3,
|
22 |
+
fnames=fnames,
|
23 |
+
label_func=label_func,
|
24 |
+
codes=codes,
|
25 |
+
item_tfms=Resize(img_size),
|
26 |
)
|
27 |
|
28 |
learn = unet_learner(dls, resnet34)
|
29 |
+
learn.load("learn")
|
30 |
+
|
31 |
|
32 |
def segmentImage(img_path):
|
33 |
img = cv2.imread(img_path, 0)
|
|
|
35 |
for j in range(img.shape[1]):
|
36 |
if img[i][j] > 0:
|
37 |
img[i][j] = 1
|
38 |
+
kernel = np.ones((3, 3), np.uint8)
|
39 |
img = cv2.erode(img, kernel, iterations=1)
|
40 |
img = cv2.dilate(img, kernel, iterations=1)
|
41 |
img = ndimage.binary_fill_holes(img).astype(int)
|
|
|
66 |
for j in range(img.shape[1]):
|
67 |
if labels[i][j] != 0:
|
68 |
gradient_img[i][j] = colors[labels[i][j]]
|
69 |
+
Sum = 0
|
70 |
+
count = 0
|
71 |
+
for i in range(len(new_sizes)):
|
72 |
+
if new_sizes[i] > 250 * c * c:
|
73 |
+
Sum += new_sizes[i]
|
74 |
+
count += 1
|
75 |
colors = np.random.randint(0, 255, (nlabels + 1, 3))
|
76 |
colors[0] = 0
|
77 |
img_color = colors[labels]
|
78 |
+
return (
|
79 |
+
img_color,
|
80 |
+
gradient_img,
|
81 |
+
"Average Area of grains: " + str(Sum / count) + " µm^2",
|
82 |
+
)
|
83 |
+
|
84 |
|
85 |
def predict_segmentation(img):
|
86 |
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
|
|
89 |
scaled_pred = (pred[0].numpy() * 255).astype(np.uint8)
|
90 |
output_image = PILImage.create(scaled_pred)
|
91 |
# Save the image to a temporary file
|
92 |
+
temp_file = "temp.png"
|
93 |
output_image.save(temp_file)
|
94 |
# Call the segmentImage function
|
95 |
+
segmented_image, gradient_image, avg_area = segmentImage(temp_file)
|
96 |
+
return output_image, segmented_image, gradient_image, avg_area
|
97 |
+
|
98 |
|
99 |
input_image = gr.inputs.Image()
|
100 |
+
output_image1 = gr.outputs.Image(type="pil")
|
101 |
+
output_image2 = gr.outputs.Image(type="pil")
|
102 |
+
output_image3 = gr.outputs.Image(type="pil")
|
103 |
+
output_image4 = gr.outputs.Textbox()
|
104 |
+
app = gr.Interface(
|
105 |
+
fn=predict_segmentation,
|
106 |
+
inputs=input_image,
|
107 |
+
outputs=[output_image1, output_image2, output_image3, output_image4],
|
108 |
+
title="Microstructure Segmentation",
|
109 |
+
description="Segment the input image into grain and background.",
|
110 |
+
)
|
111 |
+
app.launch()
|