dhanushreddy29
commited on
Commit
•
fab2111
1
Parent(s):
b1f3d7e
Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,38 @@
|
|
1 |
-
import pickle
|
2 |
import cv2
|
3 |
from fastai.vision.all import *
|
4 |
import gradio as gr
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
return pred[0]
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
outputs="image",
|
19 |
-
capture_session=True,
|
20 |
-
interpretation="default")
|
21 |
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import cv2
|
2 |
from fastai.vision.all import *
|
3 |
import gradio as gr
|
4 |
|
5 |
+
fnames = get_image_files("./albumentations/original")
|
6 |
+
def label_func(fn): return "./albumentations/labelled/"f"{fn.stem}.png"
|
7 |
+
codes = np.loadtxt('labels.txt', dtype=str)
|
8 |
+
w, h = 768, 1152
|
9 |
+
img_size = (w,h)
|
10 |
+
im_size = (h,w)
|
11 |
|
12 |
+
dls = SegmentationDataLoaders.from_label_func(
|
13 |
+
".", bs=3, fnames = fnames, label_func = label_func, codes = codes,
|
14 |
+
item_tfms=Resize(img_size)
|
15 |
+
)
|
|
|
16 |
|
17 |
+
learn = unet_learner(dls, resnet34)
|
18 |
+
learn.load('learn')
|
|
|
|
|
|
|
19 |
|
20 |
+
def predict_segmentation(img):
|
21 |
+
# Convert the input image to grayscale
|
22 |
+
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
23 |
+
# Resize the image to the size of the training images
|
24 |
+
resized_img = cv2.resize(gray_img, im_size)
|
25 |
+
# Predict the segmentation mask
|
26 |
+
pred = learn.predict(resized_img)
|
27 |
+
# Convert the predicted mask to a color image
|
28 |
+
color_pred = pred[0].show(ctx=None, cmap='gray', alpha=None)
|
29 |
+
# Convert the color image to a numpy array
|
30 |
+
color_pred_array = np.array(color_pred)
|
31 |
+
# Convert the numpy array back to a PIL image
|
32 |
+
output_image = Image.fromarray(color_pred_array)
|
33 |
+
return output_image
|
34 |
+
|
35 |
+
input_image = gr.inputs.Image()
|
36 |
+
output_image = gr.outputs.Image()
|
37 |
+
app = gr.Interface(fn=predict_segmentation, inputs=input_image, outputs=output_image, title='Microstructure Segmentation', description='Segment the input image into grain and background.')
|
38 |
+
app.launch()
|