Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,68 +3,65 @@ import requests
|
|
3 |
import streamlit as st
|
4 |
import openai
|
5 |
|
6 |
-
|
7 |
-
st.title("Scientific Question Generation")
|
8 |
-
|
9 |
-
checkpoints = ['dhmeltzer/bart-large_askscience-qg',
|
10 |
-
'dhmeltzer/flan-t5-base_askscience-qg',
|
11 |
-
'google/flan-t5-xxl']
|
12 |
-
|
13 |
-
headers = {"Authorization": f"Bearer {st.secrets['HF_token']}"}
|
14 |
-
openai.api_key = st.secrets['OpenAI_token']
|
15 |
-
|
16 |
-
def query(checkpoint, payload):
|
17 |
-
API_URL = f"https://api-inference.huggingface.co/models/{checkpoint}"
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
if user_input:
|
30 |
-
for checkpoint in checkpoints:
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
prompt = 'generate a question: ' + user_input
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
model_engine = "gpt-3.5-turbo"
|
52 |
-
max_tokens = 50
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
{"role": "user", "content": prompt},
|
61 |
-
])
|
62 |
-
|
63 |
-
output = response['choices'][0]['message']['content']
|
64 |
|
65 |
-
|
|
|
|
|
66 |
|
67 |
|
68 |
-
|
69 |
-
|
70 |
#[0]['generated_text']
|
|
|
3 |
import streamlit as st
|
4 |
import openai
|
5 |
|
6 |
+
def main():
|
7 |
+
st.title("Scientific Question Generation")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
checkpoints = ['dhmeltzer/bart-large_askscience-qg',
|
10 |
+
'dhmeltzer/flan-t5-base_askscience-qg',
|
11 |
+
'google/flan-t5-xxl']
|
12 |
|
13 |
+
headers = {"Authorization": f"Bearer {st.secrets['HF_token']}"}
|
14 |
+
openai.api_key = st.secrets['OpenAI_token']
|
15 |
+
|
16 |
+
def query(checkpoint, payload):
|
17 |
+
API_URL = f"https://api-inference.huggingface.co/models/{checkpoint}"
|
|
|
|
|
|
|
18 |
|
19 |
+
response = requests.post(API_URL,
|
20 |
+
headers=headers,
|
21 |
+
json=payload)
|
|
|
|
|
22 |
|
23 |
+
return response.json()
|
24 |
+
|
25 |
+
# User search
|
26 |
+
user_input = st.text_area("Question Generator",
|
27 |
+
"""Black holes are the most gravitationally dense objects in the universe.""")
|
28 |
+
|
29 |
+
if user_input:
|
30 |
+
for checkpoint in checkpoints:
|
31 |
+
|
32 |
+
model_name = checkpoint.split('/')[1]
|
33 |
+
|
34 |
+
if 'flan' in model_name.lower():
|
35 |
+
|
36 |
+
prompt = 'generate a question: ' + user_input
|
37 |
|
38 |
+
try:
|
39 |
+
output = query(checkpoint,{
|
40 |
+
"inputs": prompt,
|
41 |
+
"wait_for_model":True})[0]['generated_text']
|
42 |
+
except:
|
43 |
+
st.write(output)
|
44 |
+
return
|
45 |
|
46 |
+
st.write(f'Model {model_name}: {output}')
|
47 |
+
|
48 |
+
model_engine = "gpt-3.5-turbo"
|
49 |
+
max_tokens = 50
|
50 |
|
51 |
+
prompt = f"generate a question: {user_input}"
|
|
|
|
|
|
|
52 |
|
53 |
+
response=openai.ChatCompletion.create(
|
54 |
+
model=model_engine,
|
55 |
+
messages=[
|
56 |
+
{"role": "system", "content": "You are a helpful assistant that generates questions from text."},
|
57 |
+
{"role": "user", "content": prompt},
|
58 |
+
])
|
|
|
|
|
|
|
|
|
59 |
|
60 |
+
output = response['choices'][0]['message']['content']
|
61 |
+
|
62 |
+
st.write(f'Model {model_engine}: {output}')
|
63 |
|
64 |
|
65 |
+
if __name__ == "__main__":
|
66 |
+
main()
|
67 |
#[0]['generated_text']
|