import numpy as np import requests import streamlit as st import openai def main(): st.title("Scientific Question Generation") st.write("This application is designed to generate a question given a piece of scientific text.\ We include the output from four different models, the [BART-Large](https://huggingface.co/dhmeltzer/bart-large_askscience-qg) and [FLAN-T5-Base](https://huggingface.co/dhmeltzer/flan-t5-base_askscience-qg) models \ fine-tuned on the r/AskScience split of the [ELI5 dataset](https://huggingface.co/datasets/eli5) as well as the zero-shot output \ of the [FLAN-T5-XXL](https://huggingface.co/google/flan-t5-xxl) model and the [GPT-3.5-turbo](https://platform.openai.com/docs/models/gpt-3-5) model.\ \n \ For a more thorough discussion of question generation see this [report](https://wandb.ai/dmeltzer/Question_Generation/reports/Exploratory-Data-Analysis-for-r-AskScience--Vmlldzo0MjQwODg1?accessToken=fndbu2ar26mlbzqdphvb819847qqth2bxyi4hqhugbnv97607mj01qc7ed35v6w8) on EDA and this \ [report](https://api.wandb.ai/links/dmeltzer/7an677es) on our training procedure.\ \n \ **Disclaimer**: You may recieve an error message when you first run the model. We are using the Huggingface API to access the BART-Large and FLAN-T5 models, and the inference API takes around 20 seconds to load the model.\ In addition, the FLAN-T5-XXL model was recently updated on Huggingface and may give buggy outputs.\ ") checkpoints = ['dhmeltzer/bart-large_askscience-qg', 'dhmeltzer/flan-t5-base_askscience-qg', 'google/flan-t5-xxl'] headers = {"Authorization": f"Bearer {st.secrets['HF_token']}"} openai.api_key = st.secrets['OpenAI_token'] def query(checkpoint, payload): API_URL = f"https://api-inference.huggingface.co/models/{checkpoint}" response = requests.post(API_URL, headers=headers, json=payload) return response.json() # User search user_input = st.text_area("Question Generator", """Black holes are the most gravitationally dense objects in the universe.""") if user_input: for checkpoint in checkpoints: model_name = checkpoint.split('/')[1] if 'flan' in model_name.lower(): prompt = 'generate a question: ' + user_input else: prompt = user_input output = query(checkpoint,{ "inputs": prompt, "wait_for_model":True}) try: output=output[0]['generated_text'] except: st.write(output) return st.write(f'**{model_name}**: {output}') model_engine = "gpt-3.5-turbo" max_tokens = 50 prompt = f"generate a question: {user_input}" response=openai.ChatCompletion.create( model=model_engine, messages=[ {"role": "system", "content": "You are a helpful assistant that generates questions from text."}, {"role": "user", "content": prompt}, ]) output = response['choices'][0]['message']['content'] st.write(f'**{model_engine}**: {output}') if __name__ == "__main__": main() #[0]['generated_text']