Spaces:
Runtime error
Runtime error
File size: 4,032 Bytes
58627fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import os
import torch
import __main__
from dataclasses import dataclass
from colbert.utils.utils import timestamp
from .core_config import DefaultVal
@dataclass
class RunSettings:
"""
The defaults here have a special status in Run(), which initially calls assign_defaults(),
so these aren't soft defaults in that specific context.
"""
overwrite: bool = DefaultVal(False)
root: str = DefaultVal(os.path.join(os.getcwd(), 'experiments'))
experiment: str = DefaultVal('default')
index_root: str = DefaultVal(None)
name: str = DefaultVal(timestamp(daydir=True))
rank: int = DefaultVal(0)
nranks: int = DefaultVal(1)
amp: bool = DefaultVal(True)
total_visible_gpus = torch.cuda.device_count()
gpus: int = DefaultVal(total_visible_gpus)
@property
def gpus_(self):
value = self.gpus
if isinstance(value, int):
value = list(range(value))
if isinstance(value, str):
value = value.split(',')
value = list(map(int, value))
value = sorted(list(set(value)))
assert all(device_idx in range(0, self.total_visible_gpus) for device_idx in value), value
return value
@property
def index_root_(self):
return self.index_root or os.path.join(self.root, self.experiment, 'indexes/')
@property
def script_name_(self):
if '__file__' in dir(__main__):
cwd = os.path.abspath(os.getcwd())
script_path = os.path.abspath(__main__.__file__)
root_path = os.path.abspath(self.root)
if script_path.startswith(cwd):
script_path = script_path[len(cwd):]
else:
try:
commonpath = os.path.commonpath([script_path, root_path])
script_path = script_path[len(commonpath):]
except:
pass
assert script_path.endswith('.py')
script_name = script_path.replace('/', '.').strip('.')[:-3]
assert len(script_name) > 0, (script_name, script_path, cwd)
return script_name
return 'none'
@property
def path_(self):
return os.path.join(self.root, self.experiment, self.script_name_, self.name)
@property
def device_(self):
return self.gpus_[self.rank % self.nranks]
@dataclass
class ResourceSettings:
checkpoint: str = DefaultVal(None)
triples: str = DefaultVal(None)
collection: str = DefaultVal(None)
queries: str = DefaultVal(None)
index_name: str = DefaultVal(None)
@dataclass
class DocSettings:
dim: int = DefaultVal(128)
doc_maxlen: int = DefaultVal(220)
mask_punctuation: bool = DefaultVal(True)
@dataclass
class QuerySettings:
query_maxlen: int = DefaultVal(32)
attend_to_mask_tokens : bool = DefaultVal(False)
interaction: str = DefaultVal('colbert')
@dataclass
class TrainingSettings:
similarity: str = DefaultVal('cosine')
bsize: int = DefaultVal(32)
accumsteps: int = DefaultVal(1)
lr: float = DefaultVal(3e-06)
maxsteps: int = DefaultVal(500_000)
save_every: int = DefaultVal(None)
resume: bool = DefaultVal(False)
## NEW:
warmup: int = DefaultVal(None)
warmup_bert: int = DefaultVal(None)
relu: bool = DefaultVal(False)
nway: int = DefaultVal(2)
use_ib_negatives: bool = DefaultVal(False)
reranker: bool = DefaultVal(False)
distillation_alpha: float = DefaultVal(1.0)
ignore_scores: bool = DefaultVal(False)
@dataclass
class IndexingSettings:
index_path: str = DefaultVal(None)
nbits: int = DefaultVal(1)
kmeans_niters: int = DefaultVal(4)
resume: bool = DefaultVal(False)
@property
def index_path_(self):
return self.index_path or os.path.join(self.index_root_, self.index_name)
@dataclass
class SearchSettings:
ncells: int = DefaultVal(None)
centroid_score_threshold: float = DefaultVal(None)
ndocs: int = DefaultVal(None)
|