File size: 1,058 Bytes
58627fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import torch

from contextlib import contextmanager
from colbert.utils.utils import NullContextManager


class MixedPrecisionManager():
    def __init__(self, activated):
        self.activated = activated

        if self.activated:
            self.scaler = torch.cuda.amp.GradScaler()

    def context(self):
        return torch.cuda.amp.autocast() if self.activated else NullContextManager()

    def backward(self, loss):
        if self.activated:
            self.scaler.scale(loss).backward()
        else:
            loss.backward()

    def step(self, colbert, optimizer, scheduler=None):
        if self.activated:
            self.scaler.unscale_(optimizer)
            torch.nn.utils.clip_grad_norm_(colbert.parameters(), 2.0, error_if_nonfinite=False)

            self.scaler.step(optimizer)
            self.scaler.update()
        else:
            torch.nn.utils.clip_grad_norm_(colbert.parameters(), 2.0)
            optimizer.step()
        
        if scheduler is not None:
            scheduler.step()

        optimizer.zero_grad()