import torch from colbert.modeling.hf_colbert import HF_ColBERT from colbert.infra import ColBERTConfig from colbert.modeling.tokenization.utils import _split_into_batches from colbert.utils.utils import batch class QueryTokenizer(): def __init__(self, config: ColBERTConfig): self.tok = HF_ColBERT.raw_tokenizer_from_pretrained(config.checkpoint) self.config = config self.query_maxlen = config.query_maxlen self.background_maxlen = 512 - self.query_maxlen + 1 # FIXME: Make this configurable self.Q_marker_token, self.Q_marker_token_id = '[Q]', self.tok.convert_tokens_to_ids('[unused0]') self.cls_token, self.cls_token_id = self.tok.cls_token, self.tok.cls_token_id self.sep_token, self.sep_token_id = self.tok.sep_token, self.tok.sep_token_id self.mask_token, self.mask_token_id = self.tok.mask_token, self.tok.mask_token_id # assert self.Q_marker_token_id == 1 and self.mask_token_id == 103 self.used = False def tokenize(self, batch_text, add_special_tokens=False): assert type(batch_text) in [list, tuple], (type(batch_text)) tokens = [self.tok.tokenize(x, add_special_tokens=False) for x in batch_text] if not add_special_tokens: return tokens prefix, suffix = [self.cls_token, self.Q_marker_token], [self.sep_token] tokens = [prefix + lst + suffix + [self.mask_token] * (self.query_maxlen - (len(lst)+3)) for lst in tokens] return tokens def encode(self, batch_text, add_special_tokens=False): assert type(batch_text) in [list, tuple], (type(batch_text)) ids = self.tok(batch_text, add_special_tokens=False)['input_ids'] if not add_special_tokens: return ids prefix, suffix = [self.cls_token_id, self.Q_marker_token_id], [self.sep_token_id] ids = [prefix + lst + suffix + [self.mask_token_id] * (self.query_maxlen - (len(lst)+3)) for lst in ids] return ids def tensorize(self, batch_text, bsize=None, context=None): assert type(batch_text) in [list, tuple], (type(batch_text)) # add placehold for the [Q] marker batch_text = ['. ' + x for x in batch_text] obj = self.tok(batch_text, padding='max_length', truncation=True, return_tensors='pt', max_length=self.query_maxlen) ids, mask = obj['input_ids'], obj['attention_mask'] # postprocess for the [Q] marker and the [MASK] augmentation ids[:, 1] = self.Q_marker_token_id ids[ids == 0] = self.mask_token_id if context is not None: assert len(context) == len(batch_text), (len(context), len(batch_text)) obj_2 = self.tok(context, padding='longest', truncation=True, return_tensors='pt', max_length=self.background_maxlen) ids_2, mask_2 = obj_2['input_ids'][:, 1:], obj_2['attention_mask'][:, 1:] # Skip the first [SEP] ids = torch.cat((ids, ids_2), dim=-1) mask = torch.cat((mask, mask_2), dim=-1) if self.config.attend_to_mask_tokens: mask[ids == self.mask_token_id] = 1 assert mask.sum().item() == mask.size(0) * mask.size(1), mask if bsize: batches = _split_into_batches(ids, mask, bsize) return batches if self.used is False: self.used = True firstbg = (context is None) or context[0] print() print("#> QueryTokenizer.tensorize(batch_text[0], batch_background[0], bsize) ==") print(f"#> Input: {batch_text[0]}, \t\t {firstbg}, \t\t {bsize}") print(f"#> Output IDs: {ids[0].size()}, {ids[0]}") print(f"#> Output Mask: {mask[0].size()}, {mask[0]}") print() return ids, mask