import os import torch from tqdm import tqdm from typing import Union from colbert.data import Collection, Queries, Ranking from colbert.modeling.checkpoint import Checkpoint from colbert.search.index_storage import IndexScorer from colbert.infra.provenance import Provenance from colbert.infra.run import Run from colbert.infra.config import ColBERTConfig, RunConfig from colbert.infra.launcher import print_memory_stats import time TextQueries = Union[str, 'list[str]', 'dict[int, str]', Queries] class Searcher: def __init__(self, index, checkpoint=None, collection=None, config=None): print_memory_stats() initial_config = ColBERTConfig.from_existing(config, Run().config) default_index_root = initial_config.index_root_ self.index = os.path.join(default_index_root, index) self.index_config = ColBERTConfig.load_from_index(self.index) self.checkpoint = checkpoint or self.index_config.checkpoint self.checkpoint_config = ColBERTConfig.load_from_checkpoint(self.checkpoint) self.config = ColBERTConfig.from_existing(self.checkpoint_config, self.index_config, initial_config) self.collection = Collection.cast(collection or self.config.collection) self.configure(checkpoint=self.checkpoint, collection=self.collection) self.checkpoint = Checkpoint(self.checkpoint, colbert_config=self.config) use_gpu = self.config.total_visible_gpus > 0 if use_gpu: self.checkpoint = self.checkpoint.cuda() self.ranker = IndexScorer(self.index, use_gpu) print_memory_stats() def configure(self, **kw_args): self.config.configure(**kw_args) def encode(self, text: TextQueries): queries = text if type(text) is list else [text] bsize = 128 if len(queries) > 128 else None self.checkpoint.query_tokenizer.query_maxlen = self.config.query_maxlen Q = self.checkpoint.queryFromText(queries, bsize=bsize, to_cpu=True) return Q def search(self, text: str, k=10, filter_fn=None): Q = self.encode(text) return self.dense_search(Q, k, filter_fn=filter_fn) def search_all(self, queries: TextQueries, k=10, filter_fn=None): queries = Queries.cast(queries) queries_ = list(queries.values()) Q = self.encode(queries_) return self._search_all_Q(queries, Q, k, filter_fn=filter_fn) def _search_all_Q(self, queries, Q, k, filter_fn=None): all_scored_pids = [list(zip(*self.dense_search(Q[query_idx:query_idx+1], k, filter_fn=filter_fn))) for query_idx in tqdm(range(Q.size(0)))] data = {qid: val for qid, val in zip(queries.keys(), all_scored_pids)} provenance = Provenance() provenance.source = 'Searcher::search_all' provenance.queries = queries.provenance() provenance.config = self.config.export() provenance.k = k return Ranking(data=data, provenance=provenance) def dense_search(self, Q: torch.Tensor, k=10, filter_fn=None): if k <= 10: if self.config.ncells is None: self.configure(ncells=1) if self.config.centroid_score_threshold is None: self.configure(centroid_score_threshold=0.5) if self.config.ndocs is None: self.configure(ndocs=256) elif k <= 100: if self.config.ncells is None: self.configure(ncells=2) if self.config.centroid_score_threshold is None: self.configure(centroid_score_threshold=0.45) if self.config.ndocs is None: self.configure(ndocs=1024) else: if self.config.ncells is None: self.configure(ncells=4) if self.config.centroid_score_threshold is None: self.configure(centroid_score_threshold=0.4) if self.config.ndocs is None: self.configure(ndocs=max(k * 4, 4096)) pids, scores = self.ranker.rank(self.config, Q, filter_fn=filter_fn) return pids[:k], list(range(1, k+1)), scores[:k]