import torch from tqdm import tqdm from colbert.modeling.tokenization import QueryTokenizer, DocTokenizer from colbert.utils.amp import MixedPrecisionManager from colbert.modeling.colbert import ColBERT class Checkpoint(ColBERT): """ Easy inference with ColBERT. TODO: Add .cast() accepting [also] an object instance-of(Checkpoint) as first argument. """ def __init__(self, name, colbert_config=None): super().__init__(name, colbert_config) assert self.training is False self.query_tokenizer = QueryTokenizer(self.colbert_config) self.doc_tokenizer = DocTokenizer(self.colbert_config) self.amp_manager = MixedPrecisionManager(True) def query(self, *args, to_cpu=False, **kw_args): with torch.no_grad(): with self.amp_manager.context(): Q = super().query(*args, **kw_args) return Q.cpu() if to_cpu else Q def doc(self, *args, to_cpu=False, **kw_args): with torch.no_grad(): with self.amp_manager.context(): D = super().doc(*args, **kw_args) if to_cpu: return (D[0].cpu(), *D[1:]) if isinstance(D, tuple) else D.cpu() return D def queryFromText(self, queries, bsize=None, to_cpu=False, context=None): if bsize: batches = self.query_tokenizer.tensorize(queries, context=context, bsize=bsize) batches = [self.query(input_ids, attention_mask, to_cpu=to_cpu) for input_ids, attention_mask in batches] return torch.cat(batches) input_ids, attention_mask = self.query_tokenizer.tensorize(queries, context=context) return self.query(input_ids, attention_mask) def docFromText(self, docs, bsize=None, keep_dims=True, to_cpu=False, showprogress=False, return_tokens=False): assert keep_dims in [True, False, 'flatten'] if bsize: text_batches, reverse_indices = self.doc_tokenizer.tensorize(docs, bsize=bsize) returned_text = [] if return_tokens: returned_text = [text for batch in text_batches for text in batch[0]] returned_text = [returned_text[idx] for idx in reverse_indices.tolist()] returned_text = [returned_text] keep_dims_ = 'return_mask' if keep_dims == 'flatten' else keep_dims batches = [self.doc(input_ids, attention_mask, keep_dims=keep_dims_, to_cpu=to_cpu) for input_ids, attention_mask in tqdm(text_batches, disable=not showprogress)] if keep_dims is True: D = _stack_3D_tensors(batches) return (D[reverse_indices], *returned_text) elif keep_dims == 'flatten': D, mask = [], [] for D_, mask_ in batches: D.append(D_) mask.append(mask_) D, mask = torch.cat(D)[reverse_indices], torch.cat(mask)[reverse_indices] doclens = mask.squeeze(-1).sum(-1).tolist() D = D.view(-1, self.colbert_config.dim) D = D[mask.bool().flatten()].cpu() return (D, doclens, *returned_text) assert keep_dims is False D = [d for batch in batches for d in batch] return ([D[idx] for idx in reverse_indices.tolist()], *returned_text) input_ids, attention_mask = self.doc_tokenizer.tensorize(docs) return self.doc(input_ids, attention_mask, keep_dims=keep_dims, to_cpu=to_cpu) def lazy_rank(self, queries, docs): Q = self.queryFromText(queries, bsize=128, to_cpu=True) D = self.docFromText(docs, bsize=128, to_cpu=True) assert False, "Implement scoring" def score(self, Q, D, mask=None, lengths=None): assert False, "Call colbert_score" # EVENTUALLY: Just call the colbert_score function! if lengths is not None: assert mask is None, "don't supply both mask and lengths" mask = torch.arange(D.size(1), device=self.device) + 1 mask = mask.unsqueeze(0) <= lengths.to(self.device).unsqueeze(-1) scores = (D @ Q) scores = scores if mask is None else scores * mask.unsqueeze(-1) scores = scores.max(1) return scores.values.sum(-1).cpu() def _stack_3D_tensors(groups): bsize = sum([x.size(0) for x in groups]) maxlen = max([x.size(1) for x in groups]) hdim = groups[0].size(2) output = torch.zeros(bsize, maxlen, hdim, device=groups[0].device, dtype=groups[0].dtype) offset = 0 for x in groups: endpos = offset + x.size(0) output[offset:endpos, :x.size(1)] = x offset = endpos return output """ TODO: def tokenize_and_encode(checkpoint, passages): embeddings, token_ids = checkpoint.docFromText(passages, bsize=128, keep_dims=False, showprogress=True, return_tokens=True) tokens = [checkpoint.doc_tokenizer.tok.convert_ids_to_tokens(ids.tolist()) for ids in token_ids] tokens = [tokens[:tokens.index('[PAD]') if '[PAD]' in tokens else -1] for tokens in tokens] tokens = [[tok for tok in tokens if tok not in checkpoint.skiplist] for tokens in tokens] return embeddings, tokens """