diamantrsd's picture
Update app.py
2e80f2b
raw
history blame
751 Bytes
from PIL import Image
import gradio as gr
from transformers import BlipProcessor, BlipForConditionalGeneration
model_id = "Salesforce/blip-image-captioning-base"
model = BlipForConditionalGeneration.from_pretrained(model_id)
processor = BlipProcessor.from_pretrained(model_id)
def launch(input_image):
# Convert Gradio image input to PIL Image
image = Image.fromarray(input_image)
# Process the image and generate a caption
inputs = processor(image, return_tensors="pt")
out = model.generate(**inputs)
caption = processor.decode(out[0], skip_special_tokens=True)
return caption
iface = gr.Interface(
launch,
inputs=gr.inputs.Image(type="pil"), # Set input type to image
outputs="text"
)
iface.launch()