File size: 5,085 Bytes
bc69d30 0d7f0be bc69d30 d2a43af bc69d30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter, CharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.chains import RetrievalQAWithSourcesChain
from langchain.memory import ConversationBufferWindowMemory
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate,
)
from langchain.document_loaders import PyPDFLoader
import os
import chainlit as cl
from langchain.prompts import PromptTemplate
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
system_template = """Use the following pieces of context to answer the users question.
If you don't know the answer, just say that you don't know, don't try to make up an answer.
ALWAYS return a "SOURCES" part in your answer.
The "SOURCES" part should be a reference to the source of the document from which you got your answer.
Example of your response should be:
```
The answer is foo
SOURCES: xyz
```
Begin!
----------------
{summaries}"""
messages = [
SystemMessagePromptTemplate.from_template(system_template),
HumanMessagePromptTemplate.from_template("{question}"),
]
prompt = ChatPromptTemplate.from_messages(messages)
chain_type_kwargs = {"prompt": prompt}
@cl.on_chat_start
async def start():
await cl.Avatar(
name="ChatPDF",
url="https://avatars.githubusercontent.com/u/128686189?s=400&u=a1d1553023f8ea0921fba0debbe92a8c5f840dd9&v=4",
# path = r'assets/ChatPDFAvatar.jpg'
).send()
@cl.langchain_factory(use_async=True)
async def init():
files = None
# Wait for the user to upload a file
while files == None:
files = await cl.AskFileMessage(
content="Hey, Welcome to ChatPDF!\n\nChatPDF is a smart, user-friendly tool that integrates state-of-the-art AI models with text extraction and embedding capabilities to create a unique, conversational interaction with your PDF documents.\n\nSimply upload your PDF, ask your questions, and ChatPDF will deliver the most relevant answers directly from your document.\n\nPlease upload a PDF file to begin!",max_size_mb=100, accept=["application/pdf"]
).send()
file = files[0]
msg = cl.Message(content=f'''Processing "{file.name}"...''')
await msg.send()
#
with open(os.path.join(file.name), "wb") as f:
f.write(file.content)
print(file.name)
loader = PyPDFLoader(file.name)
pages = loader.load_and_split()
# add page split info
# Initialize a dictionary to keep track of duplicate page numbers
page_counts = {}
for document in pages:
page_number = document.metadata['page']
# If this is the first occurrence of this page number, initialize its count to 1
# Otherwise, increment the count for this page number
page_counts[page_number] = page_counts.get(page_number, 0) + 1
# Create the page split info string
page_split_info = f"Page-{page_number+1}.{page_counts[page_number]}"
# Add the page split info to the document's metadata
document.metadata['page_split_info'] = page_split_info
# Create a Chroma vector store
embeddings = OpenAIEmbeddings()
docsearch = await cl.make_async(Chroma.from_documents)(
pages, embeddings
)
# define memory
memory = ConversationBufferWindowMemory(
k=5,
memory_key='chat_history',
return_messages=True,
output_key='answer'
)
# Create a chain that uses the Chroma vector store
chain = ConversationalRetrievalChain.from_llm(
ChatOpenAI(temperature=0, model="gpt-4", streaming=True),
chain_type="stuff",
retriever=docsearch.as_retriever(search_kwargs={'k':5}),
memory=memory,
return_source_documents=True,
)
# Save the metadata and texts in the user session
# cl.user_session.set("metadatas", metadatas)
cl.user_session.set("texts", pages)
# Let the user know that the system is ready
await msg.update(content=f''' "{file.name}" processed. You can now ask questions!''')
return chain
@cl.langchain_postprocess
async def process_response(res):
answer = res["answer"]
source_documents = res['source_documents']
content = [source_documents[i].page_content for i in range(len(source_documents))]
name = [source_documents[i].metadata['page_split_info'] for i in range(len(source_documents))]
source_elements = [
cl.Text(content=content[i], name=name[i]) for i in range(len(source_documents))
]
if source_documents:
answer += f"\n\nSources: {', '.join([source_documents[i].metadata['page_split_info'] for i in range(len(source_documents))])}"
else:
answer += "\n\nNo sources found"
await cl.Message(content=answer, elements=source_elements).send()
# await cl.Message(content=answer).send()
|