Spaces:
Runtime error
Runtime error
ditobprasetio
commited on
Commit
•
fa2a7b2
1
Parent(s):
8ffceae
add application files
Browse files- app.py +75 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
import torchvision.transforms as transforms
|
4 |
+
import numpy as np
|
5 |
+
import gradio as gr
|
6 |
+
from torch import nn
|
7 |
+
from gradio import components
|
8 |
+
from PIL import Image
|
9 |
+
|
10 |
+
class BrainTumorClassifier(nn.Module):
|
11 |
+
def __init__(self, num_classes):
|
12 |
+
super(BrainTumorClassifier, self).__init__()
|
13 |
+
self.features = nn.Sequential(
|
14 |
+
nn.Conv2d(3, 20, kernel_size=3, padding=1),
|
15 |
+
nn.ReLU(),
|
16 |
+
nn.MaxPool2d(2, 2),
|
17 |
+
nn.Conv2d(20, 32, kernel_size=3, padding=1),
|
18 |
+
nn.ReLU(),
|
19 |
+
nn.MaxPool2d(2, 2)
|
20 |
+
)
|
21 |
+
self.classifier = nn.Sequential(
|
22 |
+
nn.Linear(32 * 56 * 56, 128), # Adjust input size based on image size
|
23 |
+
nn.ReLU(),
|
24 |
+
nn.Linear(128, num_classes)
|
25 |
+
)
|
26 |
+
|
27 |
+
def forward(self, x):
|
28 |
+
x = self.features(x)
|
29 |
+
x = x.view(-1, 32 * 56 * 56)
|
30 |
+
x = self.classifier(x)
|
31 |
+
return x
|
32 |
+
|
33 |
+
def predict(image):
|
34 |
+
image = Image.fromarray(np.uint8(image)).convert('RGB')
|
35 |
+
## give the weights trained
|
36 |
+
model_path = 'cnn_tumorbrain_classifier_self.pth'
|
37 |
+
model_load = BrainTumorClassifier(4)
|
38 |
+
model_load.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
|
39 |
+
|
40 |
+
## put the model in evaluation mode
|
41 |
+
model_load.eval()
|
42 |
+
|
43 |
+
transform_pipeline = transforms.Compose([
|
44 |
+
transforms.Resize((224,224)),
|
45 |
+
transforms.ToTensor(),
|
46 |
+
transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))
|
47 |
+
])
|
48 |
+
|
49 |
+
## transform the img like the training image
|
50 |
+
input_img = transform_pipeline(image).unsqueeze(0)
|
51 |
+
# input_img
|
52 |
+
|
53 |
+
## define the label by index
|
54 |
+
class_to_label = {0: 'glioma', 1: 'meningioma', 2: 'notumor', 3: 'pituitary'}
|
55 |
+
|
56 |
+
## run the model
|
57 |
+
with torch.no_grad():
|
58 |
+
output = model_load(input_img)
|
59 |
+
|
60 |
+
## convert to the softmax for getting percent each label
|
61 |
+
probabilities = F.softmax(output, dim=1)
|
62 |
+
|
63 |
+
## get predicted label with highest value
|
64 |
+
_, predicted_label = torch.max(probabilities,1)
|
65 |
+
# confidence_percent = probabilities[0].tolist()[predicted_label.item()]
|
66 |
+
conf, _ = torch.max(probabilities, 1)
|
67 |
+
|
68 |
+
result = "{}, with confidence level in {}%".format(class_to_label[predicted_label.item()], conf.item()*100)
|
69 |
+
return result
|
70 |
+
|
71 |
+
iface = gr.Interface(fn=predict,
|
72 |
+
inputs=gr.Image(),
|
73 |
+
outputs="textbox")
|
74 |
+
|
75 |
+
iface.launch(share=True)
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
torchvision
|
3 |
+
numpy
|