Spaces:
Sleeping
Sleeping
from transformers import pipeline, GPT2LMHeadModel, GPT2Tokenizer, SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan | |
import gradio as gr | |
import torch | |
import numpy as np | |
from datasets import load_dataset, Audio | |
from transformers import pipeline | |
import librosa | |
# Load ASR model | |
asr_pipe = pipeline(model="divakaivan/glaswegian-asr") | |
# Load GPT-2 model for generating responses | |
model_name = "gpt2" | |
gpt_tokenizer = GPT2Tokenizer.from_pretrained(model_name) | |
gpt_model = GPT2LMHeadModel.from_pretrained(model_name) | |
# Load TTS components | |
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") | |
tts_model = SpeechT5ForTextToSpeech.from_pretrained("divakaivan/glaswegian_tts") | |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") | |
# Load dataset for speaker embedding | |
dataset = load_dataset("divakaivan/glaswegian_audio") | |
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))['train'] | |
def transcribe(audio): | |
text = asr_pipe(audio)["text"] | |
return text | |
def generate_response(text): | |
input_ids = gpt_tokenizer.encode(text, return_tensors='pt') | |
response_ids = gpt_model.generate(input_ids, max_length=100, num_return_sequences=1) | |
response_text = gpt_tokenizer.decode(response_ids[0], skip_special_tokens=True) | |
return response_text | |
def synthesize_speech(text): | |
inputs = processor(text=text, return_tensors="pt") | |
speaker_embeddings = create_speaker_embedding(dataset[0]["audio"]["array"]) | |
spectrogram = tts_model.generate_speech(inputs["input_ids"], torch.tensor([speaker_embeddings])) | |
with torch.no_grad(): | |
speech = vocoder(spectrogram) | |
speech = (speech.numpy() * 32767).astype(np.int16) | |
return (16000, speech) | |
def create_speaker_embedding(waveform): | |
import os | |
from speechbrain.inference.speaker import EncoderClassifier | |
spk_model_name = "speechbrain/spkrec-xvect-voxceleb" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
speaker_model = EncoderClassifier.from_hparams( | |
source=spk_model_name, | |
run_opts={"device": device}, | |
savedir=os.path.join("/tmp", spk_model_name), | |
) | |
with torch.no_grad(): | |
speaker_embeddings = speaker_model.encode_batch(torch.tensor(waveform)) | |
speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=2) | |
speaker_embeddings = speaker_embeddings.squeeze().cpu().numpy() | |
return speaker_embeddings | |
def voice_assistant(audio): | |
transcribed_text = transcribe(audio) | |
response_text = generate_response(transcribed_text) | |
speech_audio = synthesize_speech(response_text) | |
return speech_audio | |
iface = gr.Interface( | |
fn=voice_assistant, | |
inputs=gr.Audio(type="filepath"), | |
outputs=gr.Audio(label="Response Speech", type="numpy"), | |
title="Your Glaswegian Assistant" | |
) | |
iface.launch() | |