import torch from transformers import ViTForImageClassification, ViTImageProcessor from PIL import Image import gradio as gr model = ViTForImageClassification.from_pretrained('vit-hateful-gesture-classification') processor = ViTImageProcessor.from_pretrained('google/vit-base-patch16-224') class_names = ['cut_throat_gesture', 'finger_gun_to_the_head', 'middle_finger', 'slanted_eyes_gesture', 'swastika'] def predict(image): inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs).logits predicted_class_idx = outputs.argmax(-1).item() predicted_class = class_names[predicted_class_idx] return predicted_class iface = gr.Interface(fn=predict, inputs=gr.inputs.Image(type="pil"), outputs=gr.outputs.Label(num_top_classes=1), title="Hateful Gesture Detection", description="Upload an image to classify hateful gestures or symbols") if __name__ == "__main__": iface.launch(share=True)