File size: 7,129 Bytes
22d91a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
266970e
 
22d91a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f406d9d
22d91a3
 
 
 
 
 
 
 
 
 
 
 
 
 
f406d9d
22d91a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import os

# from dotenv import load_dotenv
from chromadb.config import Settings

# https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/excel.html?highlight=xlsx#microsoft-excel
from langchain.document_loaders import CSVLoader, PDFMinerLoader, TextLoader, UnstructuredExcelLoader, Docx2txtLoader
from langchain.document_loaders import UnstructuredFileLoader


# load_dotenv()
ROOT_DIRECTORY = os.path.dirname(os.path.realpath(__file__))

# Define the folder for storing database
SOURCE_DIRECTORY = f"{ROOT_DIRECTORY}/SOURCE_DOCUMENTS"

PERSIST_DIRECTORY = f"{ROOT_DIRECTORY}/DB"

MODELS_PATH = "./models"

# Can be changed to a specific number
INGEST_THREADS = os.cpu_count() or 8

# Define the Chroma settings
CHROMA_SETTINGS = Settings(
    anonymized_telemetry=False,
    is_persistent=True,
)

# Context Window and Max New Tokens
CONTEXT_WINDOW_SIZE = 2048
MAX_NEW_TOKENS = CONTEXT_WINDOW_SIZE  # int(CONTEXT_WINDOW_SIZE/4)

#### If you get a "not enough space in the buffer" error, you should reduce the values below, start with half of the original values and keep halving the value until the error stops appearing

N_GPU_LAYERS = 8  # Llama-2-70B has 83 layers
N_BATCH = 16

### From experimenting with the Llama-2-7B-Chat-GGML model on 8GB VRAM, these values work:
# N_GPU_LAYERS = 20
# N_BATCH = 512


# https://python.langchain.com/en/latest/_modules/langchain/document_loaders/excel.html#UnstructuredExcelLoader
DOCUMENT_MAP = {
    ".txt": TextLoader,
    ".md": TextLoader,
    ".py": TextLoader,
    ".pdf": PDFMinerLoader,
    # ".pdf": UnstructuredFileLoader,
    ".csv": CSVLoader,
    ".xls": UnstructuredExcelLoader,
    ".xlsx": UnstructuredExcelLoader,
    ".docx": Docx2txtLoader,
    ".doc": Docx2txtLoader,
}

# Default Instructor Model
#EMBEDDING_MODEL_NAME = "hkunlp/instructor-large"  # Uses 1.5 GB of VRAM (High Accuracy with lower VRAM usage)

####
#### OTHER EMBEDDING MODEL OPTIONS
####

# EMBEDDING_MODEL_NAME = "hkunlp/instructor-xl" # Uses 5 GB of VRAM (Most Accurate of all models)
# EMBEDDING_MODEL_NAME = "intfloat/e5-large-v2" # Uses 1.5 GB of VRAM (A little less accurate than instructor-large)
# EMBEDDING_MODEL_NAME = "intfloat/e5-base-v2" # Uses 0.5 GB of VRAM (A good model for lower VRAM GPUs)
# EMBEDDING_MODEL_NAME = "all-MiniLM-L6-v2" # Uses 0.2 GB of VRAM (Less accurate but fastest - only requires 150mb of vram)

####
#### MULTILINGUAL EMBEDDING MODELS
####

EMBEDDING_MODEL_NAME = "intfloat/multilingual-e5-large" # Uses 2.5 GB of VRAM
# EMBEDDING_MODEL_NAME = "intfloat/multilingual-e5-base" # Uses 1.2 GB of VRAM


#### SELECT AN OPEN SOURCE LLM (LARGE LANGUAGE MODEL)
# Select the Model ID and model_basename
# load the LLM for generating Natural Language responses

#### GPU VRAM Memory required for LLM Models (ONLY) by Billion Parameter value (B Model)
#### Does not include VRAM used by Embedding Models - which use an additional 2GB-7GB of VRAM depending on the model.
####
#### (B Model)   (float32)    (float16)    (GPTQ 8bit)         (GPTQ 4bit)
####    7b         28 GB        14 GB       7 GB - 9 GB        3.5 GB - 5 GB
####    13b        52 GB        26 GB       13 GB - 15 GB      6.5 GB - 8 GB
####    32b        130 GB       65 GB       32.5 GB - 35 GB    16.25 GB - 19 GB
####    65b        260.8 GB     130.4 GB    65.2 GB - 67 GB    32.6 GB -  - 35 GB

# MODEL_ID = "TheBloke/Llama-2-7B-Chat-GGML"
# MODEL_BASENAME = "llama-2-7b-chat.ggmlv3.q4_0.bin"

####
#### (FOR GGUF MODELS)
####

# MODEL_ID = "TheBloke/Llama-2-13b-Chat-GGUF"
# MODEL_BASENAME = "llama-2-13b-chat.Q4_K_M.gguf"

MODEL_ID = "TheBloke/Llama-2-7b-Chat-GGUF"
MODEL_BASENAME = "llama-2-7b-chat.Q4_K_M.gguf"

# MODEL_ID = "TheBloke/Mistral-7B-Instruct-v0.1-GGUF"
# MODEL_BASENAME = "mistral-7b-instruct-v0.1.Q8_0.gguf"

# MODEL_ID = "TheBloke/Llama-2-70b-Chat-GGUF"
# MODEL_BASENAME = "llama-2-70b-chat.Q4_K_M.gguf"

####
#### (FOR HF MODELS)
####

# MODEL_ID = "NousResearch/Llama-2-7b-chat-hf"
# MODEL_BASENAME = None
# MODEL_ID = "TheBloke/vicuna-7B-1.1-HF"
# MODEL_BASENAME = None
# MODEL_ID = "TheBloke/Wizard-Vicuna-7B-Uncensored-HF"
# MODEL_ID = "TheBloke/guanaco-7B-HF"
# MODEL_ID = 'NousResearch/Nous-Hermes-13b' # Requires ~ 23GB VRAM. Using STransformers
# alongside will 100% create OOM on 24GB cards.
# llm = load_model(device_type, model_id=model_id)

####
#### (FOR GPTQ QUANTIZED) Select a llm model based on your GPU and VRAM GB. Does not include Embedding Models VRAM usage.
####

##### 48GB VRAM Graphics Cards (RTX 6000, RTX A6000 and other 48GB VRAM GPUs) #####

### 65b GPTQ LLM Models for 48GB GPUs (*** With best embedding model: hkunlp/instructor-xl ***)
# MODEL_ID = "TheBloke/guanaco-65B-GPTQ"
# MODEL_BASENAME = "model.safetensors"
# MODEL_ID = "TheBloke/Airoboros-65B-GPT4-2.0-GPTQ"
# MODEL_BASENAME = "model.safetensors"
# MODEL_ID = "TheBloke/gpt4-alpaca-lora_mlp-65B-GPTQ"
# MODEL_BASENAME = "model.safetensors"
# MODEL_ID = "TheBloke/Upstage-Llama1-65B-Instruct-GPTQ"
# MODEL_BASENAME = "model.safetensors"

##### 24GB VRAM Graphics Cards (RTX 3090 - RTX 4090 (35% Faster) - RTX A5000 - RTX A5500) #####

### 13b GPTQ Models for 24GB GPUs (*** With best embedding model: hkunlp/instructor-xl ***)
# MODEL_ID = "TheBloke/Wizard-Vicuna-13B-Uncensored-GPTQ"
# MODEL_BASENAME = "Wizard-Vicuna-13B-Uncensored-GPTQ-4bit-128g.compat.no-act-order.safetensors"
# MODEL_ID = "TheBloke/vicuna-13B-v1.5-GPTQ"
# MODEL_BASENAME = "model.safetensors"
# MODEL_ID = "TheBloke/Nous-Hermes-13B-GPTQ"
# MODEL_BASENAME = "nous-hermes-13b-GPTQ-4bit-128g.no-act.order"
# MODEL_ID = "TheBloke/WizardLM-13B-V1.2-GPTQ"
# MODEL_BASENAME = "gptq_model-4bit-128g.safetensors

### 30b GPTQ Models for 24GB GPUs (*** Requires using intfloat/e5-base-v2 instead of hkunlp/instructor-large as embedding model ***)
# MODEL_ID = "TheBloke/Wizard-Vicuna-30B-Uncensored-GPTQ"
# MODEL_BASENAME = "Wizard-Vicuna-30B-Uncensored-GPTQ-4bit--1g.act.order.safetensors"
# MODEL_ID = "TheBloke/WizardLM-30B-Uncensored-GPTQ"
# MODEL_BASENAME = "WizardLM-30B-Uncensored-GPTQ-4bit.act-order.safetensors"

##### 8-10GB VRAM Graphics Cards (RTX 3080 - RTX 3080 Ti - RTX 3070 Ti - 3060 Ti - RTX 2000 Series, Quadro RTX 4000, 5000, 6000) #####
### (*** Requires using intfloat/e5-small-v2 instead of hkunlp/instructor-large as embedding model ***)

### 7b GPTQ Models for 8GB GPUs
# MODEL_ID = "TheBloke/Wizard-Vicuna-7B-Uncensored-GPTQ"
# MODEL_BASENAME = "Wizard-Vicuna-7B-Uncensored-GPTQ-4bit-128g.no-act.order.safetensors"
# MODEL_ID = "TheBloke/WizardLM-7B-uncensored-GPTQ"
# MODEL_BASENAME = "WizardLM-7B-uncensored-GPTQ-4bit-128g.compat.no-act-order.safetensors"
# MODEL_ID = "TheBloke/wizardLM-7B-GPTQ"
# MODEL_BASENAME = "wizardLM-7B-GPTQ-4bit.compat.no-act-order.safetensors"

####
#### (FOR GGML) (Quantized cpu+gpu+mps) models - check if they support llama.cpp
####

# MODEL_ID = "TheBloke/wizard-vicuna-13B-GGML"
# MODEL_BASENAME = "wizard-vicuna-13B.ggmlv3.q4_0.bin"
# MODEL_BASENAME = "wizard-vicuna-13B.ggmlv3.q6_K.bin"
# MODEL_BASENAME = "wizard-vicuna-13B.ggmlv3.q2_K.bin"
# MODEL_ID = "TheBloke/orca_mini_3B-GGML"
# MODEL_BASENAME = "orca-mini-3b.ggmlv3.q4_0.bin"