Spaces:
Paused
Paused
File size: 8,638 Bytes
22d91a3 c18ec7e 1d1dd8d 198843f 22d91a3 1d1dd8d 760ae83 e72e226 22d91a3 1d1dd8d 22d91a3 1d1dd8d 22d91a3 c18ec7e 22d91a3 8fa0233 22d91a3 8fa0233 c18ec7e 760ae83 8fa0233 22d91a3 c18ec7e 22d91a3 1d1dd8d c18ec7e 1d1dd8d c18ec7e 1d1dd8d 08f602b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
import torch
import logging
from auto_gptq import AutoGPTQForCausalLM
from huggingface_hub import hf_hub_download
from langchain.llms import LlamaCpp, HuggingFacePipeline
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
LlamaForCausalLM,
LlamaTokenizer,
GenerationConfig,
pipeline,
)
torch.set_grad_enabled(False)
from constants import CONTEXT_WINDOW_SIZE, MAX_NEW_TOKENS, N_GPU_LAYERS, N_BATCH, MODELS_PATH
def load_quantized_model_gguf_ggml(model_id, model_basename, device_type, logging, stream = False, callbacks = []):
"""
Load a GGUF/GGML quantized model using LlamaCpp.
This function attempts to load a GGUF/GGML quantized model using the LlamaCpp library.
If the model is of type GGML, and newer version of LLAMA-CPP is used which does not support GGML,
it logs a message indicating that LLAMA-CPP has dropped support for GGML.
Parameters:
- model_id (str): The identifier for the model on HuggingFace Hub.
- model_basename (str): The base name of the model file.
- device_type (str): The type of device where the model will run, e.g., 'mps', 'cuda', etc.
- logging (logging.Logger): Logger instance for logging messages.
Returns:
- LlamaCpp: An instance of the LlamaCpp model if successful, otherwise None.
Notes:
- The function uses the `hf_hub_download` function to download the model from the HuggingFace Hub.
- The number of GPU layers is set based on the device type.
"""
try:
logging.info("Using Llamacpp for GGUF/GGML quantized models")
model_path = hf_hub_download(
repo_id=model_id,
filename=model_basename,
resume_download=True,
cache_dir=MODELS_PATH,
)
kwargs = {
"model_path": model_path,
"n_ctx": CONTEXT_WINDOW_SIZE,
"max_tokens": MAX_NEW_TOKENS,
"n_batch": N_BATCH,
# set this based on your GPU & CPU RAM
}
if device_type.lower() == "mps":
kwargs["n_gpu_layers"] = 1
if device_type.lower() == "cuda":
kwargs["n_gpu_layers"] = N_GPU_LAYERS # set this based on your GPU
kwargs["stream"] = stream
if stream == True:
kwargs["callbacks"] = [StreamingStdOutCallbackHandler()]
return LlamaCpp(**kwargs)
except:
if "ggml" in model_basename:
logging.INFO("If you were using GGML model, LLAMA-CPP Dropped Support, Use GGUF Instead")
return None
def load_quantized_model_qptq(model_id, model_basename, device_type, logging):
"""
Load a GPTQ quantized model using AutoGPTQForCausalLM.
This function loads a quantized model that ends with GPTQ and may have variations
of .no-act.order or .safetensors in their HuggingFace repo.
Parameters:
- model_id (str): The identifier for the model on HuggingFace Hub.
- model_basename (str): The base name of the model file.
- device_type (str): The type of device where the model will run.
- logging (logging.Logger): Logger instance for logging messages.
Returns:
- model (AutoGPTQForCausalLM): The loaded quantized model.
- tokenizer (AutoTokenizer): The tokenizer associated with the model.
Notes:
- The function checks for the ".safetensors" ending in the model_basename and removes it if present.
"""
# The code supports all huggingface models that ends with GPTQ and have some variation
# of .no-act.order or .safetensors in their HF repo.
logging.info("Using AutoGPTQForCausalLM for quantized models")
if ".safetensors" in model_basename:
# Remove the ".safetensors" ending if present
model_basename = model_basename.replace(".safetensors", "")
tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True)
logging.info("Tokenizer loaded")
model = AutoGPTQForCausalLM.from_quantized(
model_id,
model_basename=model_basename,
use_safetensors=True,
trust_remote_code=True,
device_map="auto",
use_triton=False,
quantize_config=None,
)
return model, tokenizer
def load_full_model(model_id, model_basename, device_type, logging):
"""
Load a full model using either LlamaTokenizer or AutoModelForCausalLM.
This function loads a full model based on the specified device type.
If the device type is 'mps' or 'cpu', it uses LlamaTokenizer and LlamaForCausalLM.
Otherwise, it uses AutoModelForCausalLM.
Parameters:
- model_id (str): The identifier for the model on HuggingFace Hub.
- model_basename (str): The base name of the model file.
- device_type (str): The type of device where the model will run.
- logging (logging.Logger): Logger instance for logging messages.
Returns:
- model (Union[LlamaForCausalLM, AutoModelForCausalLM]): The loaded model.
- tokenizer (Union[LlamaTokenizer, AutoTokenizer]): The tokenizer associated with the model.
Notes:
- The function uses the `from_pretrained` method to load both the model and the tokenizer.
- Additional settings are provided for NVIDIA GPUs, such as loading in 4-bit and setting the compute dtype.
"""
if device_type.lower() in ["mps", "cpu"]:
logging.info("Using LlamaTokenizer")
tokenizer = LlamaTokenizer.from_pretrained(model_id, cache_dir="./models/")
model = LlamaForCausalLM.from_pretrained(model_id, cache_dir="./models/")
else:
logging.info("Using AutoModelForCausalLM for full models")
tokenizer = AutoTokenizer.from_pretrained(model_id, cache_dir="./models/")
logging.info("Tokenizer loaded")
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
cache_dir=MODELS_PATH,
# trust_remote_code=True, # set these if you are using NVIDIA GPU
# load_in_4bit=True,
# bnb_4bit_quant_type="nf4",
# bnb_4bit_compute_dtype=torch.float16,
max_memory={0: "15GB"} # Uncomment this line with you encounter CUDA out of memory errors
)
model.tie_weights()
return model, tokenizer
def load_model(device_type, model_id, model_basename=None, LOGGING=logging, stream=False, callbacks = []):
"""
Select a model for text generation using the HuggingFace library.
If you are running this for the first time, it will download a model for you.
subsequent runs will use the model from the disk.
Args:
device_type (str): Type of device to use, e.g., "cuda" for GPU or "cpu" for CPU.
model_id (str): Identifier of the model to load from HuggingFace's model hub.
model_basename (str, optional): Basename of the model if using quantized models.
Defaults to None.
Returns:
HuggingFacePipeline: A pipeline object for text generation using the loaded model.
Raises:
ValueError: If an unsupported model or device type is provided.
"""
logging.info(f"Loading Model: {model_id}, on: {device_type}")
logging.info("This action can take a few minutes!")
if model_basename is not None:
if ".gguf" in model_basename.lower():
llm = load_quantized_model_gguf_ggml(model_id, model_basename, device_type, LOGGING, stream, callbacks)
return llm
elif ".ggml" in model_basename.lower():
model, tokenizer = load_quantized_model_gguf_ggml(model_id, model_basename, device_type, LOGGING)
else:
model, tokenizer = load_quantized_model_qptq(model_id, model_basename, device_type, LOGGING)
else:
model, tokenizer = load_full_model(model_id, model_basename, device_type, LOGGING)
# Load configuration from the model to avoid warnings
generation_config = GenerationConfig.from_pretrained(model_id)
# see here for details:
# https://huggingface.co/docs/transformers/
# main_classes/text_generation#transformers.GenerationConfig.from_pretrained.returns
# Create a pipeline for text generation
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_length=50,
temperature=0.15,
top_p=0.1,
top_k=40,
repetition_penalty=1.0,
generation_config=generation_config,
)
local_llm = HuggingFacePipeline(pipeline=pipe)
logging.info("Local LLM Loaded")
return local_llm
|