katara / main.py
Daniel Marques
feat: add save document route
d0c75d3
raw
history blame
5.51 kB
from typing import List
from fastapi import FastAPI, HTTPException, UploadFile
from fastapi.staticfiles import StaticFiles
from pydantic import BaseModel
import pickle
import uvicorn
import logging
import os
import shutil
import subprocess
import torch
from langchain.chains import RetrievalQA
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.prompts import PromptTemplate
# from langchain.embeddings import HuggingFaceEmbeddings
from run_localGPT import load_model
from prompt_template_utils import get_prompt_template
# from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.vectorstores import Chroma
from werkzeug.utils import secure_filename
from constants import CHROMA_SETTINGS, EMBEDDING_MODEL_NAME, PERSIST_DIRECTORY, MODEL_ID, MODEL_BASENAME
if torch.backends.mps.is_available():
DEVICE_TYPE = "mps"
elif torch.cuda.is_available():
DEVICE_TYPE = "cuda"
else:
DEVICE_TYPE = "cpu"
SHOW_SOURCES = True
logging.info(f"Running on: {DEVICE_TYPE}")
logging.info(f"Display Source Documents set to: {SHOW_SOURCES}")
EMBEDDINGS = HuggingFaceInstructEmbeddings(model_name=EMBEDDING_MODEL_NAME, model_kwargs={"device": DEVICE_TYPE})
# load the vectorstore
DB = Chroma(
persist_directory=PERSIST_DIRECTORY,
embedding_function=EMBEDDINGS,
client_settings=CHROMA_SETTINGS,
)
RETRIEVER = DB.as_retriever()
LLM = load_model(device_type=DEVICE_TYPE, model_id=MODEL_ID, model_basename=MODEL_BASENAME)
prompt, memory = get_prompt_template(promptTemplate_type="llama", history=False)
template = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer. Use 10 sentences maximum. Keep the answer as concise as possible. Always say "thanks for asking!" at the end of the answer.
{context}
Question: {question}
Helpful Answer:"""
QA_CHAIN_PROMPT = PromptTemplate.from_template(template)
QA = RetrievalQA.from_chain_type(
llm=LLM,
chain_type="stuff",
retriever=RETRIEVER,
return_source_documents=SHOW_SOURCES,
chain_type_kwargs={
"prompt": QA_CHAIN_PROMPT,
},
)
class Predict(BaseModel):
prompt: str
app = FastAPI(title="homepage-app")
api_app = FastAPI(title="api app")
app.mount("/api", api_app, name="api")
app.mount("/", StaticFiles(directory="static",html = True), name="static")
@api_app.post('/predict')
async def predict(data: Predict):
user_prompt = data.prompt
if user_prompt:
# print(f'User Prompt: {user_prompt}')
# Get the answer from the chain
res = QA(user_prompt)
answer, docs = res["result"], res["source_documents"]
prompt_response_dict = {
"Prompt": user_prompt,
"Answer": answer,
}
prompt_response_dict["Sources"] = []
for document in docs:
prompt_response_dict["Sources"].append(
(os.path.basename(str(document.metadata["source"])), str(document.page_content))
)
return {"response": prompt_response_dict}
else:
raise HTTPException(status_code=400, detail="Prompt Incorrect")
@api_app.get("/run_ingest")
def run_ingest_route():
try:
if os.path.exists(PERSIST_DIRECTORY):
try:
shutil.rmtree(PERSIST_DIRECTORY)
except OSError as e:
raise HTTPException(status_code=500, detail=f"Error: {e.filename} - {e.strerror}.")
else:
raise HTTPException(status_code=500, detail="The directory does not exist")
run_langest_commands = ["python", "ingest.py"]
if DEVICE_TYPE == "cpu":
run_langest_commands.append("--device_type")
run_langest_commands.append(DEVICE_TYPE)
result = subprocess.run(run_langest_commands, capture_output=True)
if result.returncode != 0:
raise HTTPException(status_code=400, detail="Script execution failed: {}")
# load the vectorstore
DB = Chroma(
persist_directory=PERSIST_DIRECTORY,
embedding_function=EMBEDDINGS,
client_settings=CHROMA_SETTINGS,
)
RETRIEVER = DB.as_retriever()
prompt, memory = get_prompt_template(promptTemplate_type="llama", history=False)
QA = RetrievalQA.from_chain_type(
llm=LLM,
chain_type="stuff",
retriever=RETRIEVER,
return_source_documents=SHOW_SOURCES,
chain_type_kwargs={
"prompt": prompt,
},
)
response = "Script executed successfully: {}".format(result.stdout.decode("utf-8"))
return {"response": response}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error occurred: {str(e)}")
@app.post("/save_document/")
async def create_upload_file(file: Union[UploadFile, None] = None):
if not file:
raise HTTPException(status_code=400, detail="No upload file sent")
else:
if file.filename == "":
raise HTTPException(status_code=400, detail="No selected file")
if file:
filename = secure_filename(file.filename)
folder_path = "SOURCE_DOCUMENTS"
if not os.path.exists(folder_path):
os.makedirs(folder_path)
file_path = os.path.join(folder_path, filename)
file.save(file_path)
return {"response": "File saved successfully"}