Spaces:
Running
on
Zero
Running
on
Zero
import random | |
import gradio as gr | |
import numpy as np | |
import torch | |
import spaces | |
from diffusers import FluxPipeline | |
from PIL import Image | |
from diffusers.utils import export_to_gif | |
HEIGHT = 256 | |
WIDTH = 1024 | |
MAX_SEED = np.iinfo(np.int32).max | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
pipe = FluxPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-dev", | |
torch_dtype=torch.bfloat16 | |
).to("device") | |
def split_image(input_image, num_splits=4): | |
# Create a list to store the output images | |
output_images = [] | |
# Split the image into four 256x256 sections | |
for i in range(num_splits): | |
left = i * 256 | |
right = (i + 1) * 256 | |
box = (left, 0, right, 256) | |
output_images.append(input_image.crop(box)) | |
return output_images | |
def predict(prompt, seed=42, randomize_seed=False, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)): | |
prompt_template = f""" | |
A side by side 4 frame image showing consecutive stills from a looped gif moving from left to right. | |
The gif is of {prompt}. | |
""" | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
image = pipe( | |
prompt=prompt_template, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
num_images_per_prompt=1, | |
generator=torch.Generator("cpu").manual_seed(seed), | |
height=HEIGHT, | |
width=WIDTH | |
).images[0] | |
return export_to_gif(split_image(image, 4), "flux.gif", fps=4), seed | |
demo = gr.Interface(fn=predict, inputs="text", outputs="image") | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 520px; | |
} | |
""" | |
examples = [ | |
"a cat waving its paws in the air", | |
"a panda moving their hips from side to side", | |
] | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown("Create GIFs with Flux-dev. Based on @fofr's [tweet](https://x.com/fofrAI/status/1828910395962343561)") | |
with gr.Row(): | |
prompt = gr.Text("Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt") | |
submit = gr.Button("Submit", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=1, | |
maximum=15, | |
step=0.1, | |
value=3.5, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=28, | |
) | |
output = gr.Image("GIF", show_label=False) | |
gr.Examples( | |
examples=examples, | |
fn=predict, | |
inputs=[prompt], | |
outputs=[output, seed], | |
cache_examples="lazy" | |
) | |
gr.on( | |
triggers=[submit.click, prompt.submit], | |
fn=predict, | |
inputs=[prompt, seed, randomize_seed, guidance_scale, num_inference_steps], | |
outputs = [output, seed] | |
) | |
demo.launch() |