Spaces:
Running
Running
File size: 5,459 Bytes
dfc6dc5 693929a dfc6dc5 693929a dfc6dc5 693929a dfc6dc5 693929a dfc6dc5 693929a dfc6dc5 693929a dfc6dc5 693929a dfc6dc5 693929a dfc6dc5 693929a dfc6dc5 693929a dfc6dc5 693929a dfc6dc5 693929a dfc6dc5 693929a dfc6dc5 693929a dfc6dc5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import gradio as gr
import openai
import os
from dotenv import load_dotenv
import phoenix as px
import llama_index
from llama_index import Prompt, ServiceContext, VectorStoreIndex, SimpleDirectoryReader
from llama_index.chat_engine.types import ChatMode
from llama_index.llms import ChatMessage, MessageRole
from llama_index.vector_stores.qdrant import QdrantVectorStore
from llama_index.text_splitter import SentenceSplitter
from llama_index.extractors import TitleExtractor
from llama_index.ingestion import IngestionPipeline
from chat_template import CHAT_TEXT_QA_PROMPT
from schemas import ChatbotVersion, ServiceProvider
from chatbot import Chatbot, IndexBuilder
from custom_io import UnstructuredReader, default_file_metadata_func
from qdrant import client as qdrantClient
from llama_index import set_global_service_context
from service_provider_config import get_service_provider_config
# initial service setup
px.launch_app()
llama_index.set_global_handler("arize_phoenix")
load_dotenv()
openai.api_key = os.getenv("OPENAI_API_KEY")
CHUNK_SIZE = 1024
LLM, EMBED_MODEL = get_service_provider_config(
service_provider=ServiceProvider.OPENAI)
service_context = ServiceContext.from_defaults(
chunk_size=CHUNK_SIZE,
llm=LLM,
embed_model=EMBED_MODEL,
)
set_global_service_context(service_context)
class AwesumIndexBuilder(IndexBuilder):
def _load_doucments(self):
dir_reader = SimpleDirectoryReader('./awesumcare_data', file_extractor={
".pdf": UnstructuredReader(),
".docx": UnstructuredReader(),
".pptx": UnstructuredReader(),
},
recursive=True,
exclude=["*.png", "*.pptx"],
file_metadata=default_file_metadata_func)
self.documents = dir_reader.load_data()
print(f"Loaded {len(self.documents)} docs")
def _setup_service_context(self):
super()._setup_service_context()
def _setup_vector_store(self):
self.vector_store = QdrantVectorStore(
client=qdrantClient, collection_name=self.vdb_collection_name)
super()._setup_vector_store()
def _setup_index(self):
super()._setup_index()
if self.is_load_from_vector_store:
self.index = VectorStoreIndex.from_vector_store(self.vector_store)
print("set up index from vector store")
return
pipeline = IngestionPipeline(
transformations=[
SentenceSplitter(),
EMBED_MODEL,
],
vector_store=self.vector_store,
)
pipeline.run(documents=self.documents)
self.index = VectorStoreIndex.from_vector_store(self.vector_store)
class AwesumCareChatbot(Chatbot):
DENIED_ANSWER_PROMPT = ""
SYSTEM_PROMPT = ""
CHAT_EXAMPLES = [
"什麼是安心三寶?",
"點樣立平安紙?"
]
def _setup_observer(self):
pass
def _setup_index(self):
super()._setup_index()
# def _setup_index(self):
# self.index = VectorStoreIndex.from_documents(
# self.documents,
# service_context=self.service_context
# )
# super()._setup_index()
def _setup_query_engine(self):
super()._setup_query_engine()
self.query_engine = self.index.as_query_engine(
text_qa_template=CHAT_TEXT_QA_PROMPT)
def _setup_tools(self):
from llama_index.tools.query_engine import QueryEngineTool
self.tools = QueryEngineTool.from_defaults(
query_engine=self.query_engine)
return super()._setup_tools()
def _setup_chat_engine(self):
# testing #
from llama_index.agent import OpenAIAgent
self.chat_engine = OpenAIAgent.from_tools(
tools=[self.tools],
llm=LLM,
similarity_top_k=1,
verbose=True
)
print("set up agent as chat engine")
# testing #
# self.chat_engine = self.index.as_chat_engine(
# chat_mode=ChatMode.BEST,
# similarity_top_k=5,
# text_qa_template=CHAT_TEXT_QA_PROMPT)
super()._setup_chat_engine()
# gpt-3.5-turbo-1106, gpt-4-1106-preview
awesum_chatbot = AwesumCareChatbot(model_name=ChatbotVersion.CHATGPT_35.value,
index_builder=AwesumIndexBuilder(
vdb_collection_name="demo-v0",
is_load_from_vector_store=True)
)
def vote(data: gr.LikeData):
if data.liked:
gr.Info("You up-voted this response: " + data.value)
else:
gr.Info("You down-voted this response: " + data.value)
chatbot = gr.Chatbot()
with gr.Blocks() as demo:
gr.Markdown("# Awesum Care demo")
with gr.Tab("With awesum care data prepared"):
gr.ChatInterface(
awesum_chatbot.stream_chat,
chatbot=chatbot,
examples=awesum_chatbot.CHAT_EXAMPLES,
)
chatbot.like(vote, None, None)
with gr.Tab("With Initial System Prompt (a.k.a. prompt wrapper)"):
gr.ChatInterface(
awesum_chatbot.predict_with_prompt_wrapper, examples=awesum_chatbot.CHAT_EXAMPLES)
with gr.Tab("Vanilla ChatGPT without modification"):
gr.ChatInterface(awesum_chatbot.predict_vanilla_chatgpt,
examples=awesum_chatbot.CHAT_EXAMPLES)
demo.queue()
demo.launch()
|