Spaces:
Running
Running
File size: 3,949 Bytes
dfc6dc5 7a9ec21 dfc6dc5 a1b1b32 dfc6dc5 9021b39 7a9ec21 9021b39 7a9ec21 9021b39 7a9ec21 9021b39 dfc6dc5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
"""Unstructured file reader.
A parser for unstructured text files using Unstructured.io.
Supports .txt, .docx, .pptx, .jpg, .png, .eml, .html, and .pdf documents.
"""
from datetime import datetime
import mimetypes
import os
from pathlib import Path
import re
from typing import Any, Dict, List, Optional
from llama_index.core.readers.base import BaseReader
from llama_index.core import Document
class UnstructuredReader(BaseReader):
"""General unstructured text reader for a variety of files."""
def __init__(self, *args: Any, **kwargs: Any) -> None:
"""Init params."""
super().__init__(*args, **kwargs)
# Prerequisite for Unstructured.io to work
import nltk
nltk.download("punkt")
nltk.download("averaged_perceptron_tagger")
def load_data(
self,
file: Path,
extra_info: Optional[Dict] = None,
split_documents: Optional[bool] = True,
) -> List[Document]:
"""Parse file."""
from unstructured.partition.auto import partition
elements = partition(str(file))
text_chunks = [" ".join(str(el).split()) for el in elements]
if split_documents:
return [
Document(text=chunk, extra_info=extra_info or {})
for chunk in text_chunks
]
else:
return [
Document(text="\n\n".join(text_chunks), extra_info=extra_info or {})
]
class MarkdownReader(BaseReader):
"""General unstructured text reader for a variety of files."""
def __init__(self, *args: Any, **kwargs: Any) -> None:
"""Init params."""
super().__init__(*args, **kwargs)
def load_data(
self,
file: Path,
extra_info: Optional[Dict] = None,
split_documents: Optional[bool] = True,
) -> List[Document]:
"""Parse file."""
from unstructured.partition.auto import partition
elements = parse_knowledge_units(str(file))
if split_documents:
return [
Document(text=ele, extra_info=extra_info or {})
for ele in elements
]
def parse_knowledge_units(file_path):
with open(file_path, 'r', encoding='utf-8') as file:
lines = file.readlines()
knowledge_units = []
current_unit = ""
unit_start_pattern = re.compile(r'^\d+\.\s')
for line in lines:
stripped_line = line.strip()
if unit_start_pattern.match(stripped_line):
if current_unit:
knowledge_units.append(current_unit.strip())
current_unit = ""
current_unit += line
else:
current_unit += line
if current_unit:
knowledge_units.append(current_unit.strip())
# for line in lines:
# if line.strip() and line[0].isdigit() and '.' in line:
# if current_unit:
# knowledge_units.append(current_unit.strip())
# current_unit = ""
# current_unit += line
# else:
# current_unit += line
# if current_unit:
# knowledge_units.append(current_unit.strip())
return knowledge_units
def default_file_metadata_func(file_path: str) -> Dict:
"""Get some handy metadate from filesystem.
Args:
file_path: str: file path in str
"""
return {
"file_path": file_path,
"file_name": os.path.basename(file_path),
"file_type": mimetypes.guess_type(file_path)[0],
"file_size": os.path.getsize(file_path),
"creation_date": datetime.fromtimestamp(
Path(file_path).stat().st_ctime
).strftime("%Y-%m-%d"),
"last_modified_date": datetime.fromtimestamp(
Path(file_path).stat().st_mtime
).strftime("%Y-%m-%d"),
"last_accessed_date": datetime.fromtimestamp(
Path(file_path).stat().st_atime
).strftime("%Y-%m-%d"),
} |