import gradio as gr
title = "XLM"
description = "Gradio Demo for XLM. To use it, simply add your text, or click one of the examples to load them. Read more at the links below."
article = "
Cross-lingual Language Model Pretraining
"
examples = [
['Paris is the of France.','xlm-mlm-en-2048']
]
io1 = gr.Interface.load("huggingface/xlm-mlm-en-2048")
io2 = gr.Interface.load("huggingface/xlm-clm-ende-1024")
def inference(inputtext, model):
if model == "xlm-mlm-en-2048":
outlabel = io1(inputtext)
else:
outlabel = io2(inputtext)
return outlabel
gr.Interface(
inference,
[gr.inputs.Textbox(label="Context",lines=10),gr.inputs.Dropdown(choices=["xlm-mlm-en-2048","xlm-clm-ende-1024"], type="value", default="xlm-mlm-en-2048", label="model")],
[gr.outputs.Label(label="Output")],
examples=examples,
article=article,
title=title,
description=description).launch(enable_queue=True)