Spaces:
Running
on
T4
Running
on
T4
File size: 2,050 Bytes
49f65e4 9c7d136 72ea4d8 49f65e4 376476a 4531ae0 ae52322 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
import torch
from PIL import Image
import numpy as np
from realesrgan import RealESRGAN
import os
import gradio as gr
os.system("gdown https://drive.google.com/uc?id=1pG2S3sYvSaO0V0B8QPOl1RapPHpUGOaV -O RealESRGAN_x2.pth")
os.system("gdown https://drive.google.com/uc?id=1SGHdZAln4en65_NQeQY9UjchtkEF9f5F -O RealESRGAN_x4.pth")
os.system("gdown https://drive.google.com/uc?id=1mT9ewx86PSrc43b-ax47l1E2UzR7Ln4j -O RealESRGAN_x8.pth")
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model2 = RealESRGAN(device, scale=2)
model2.load_weights('RealESRGAN_x2.pth')
model4 = RealESRGAN(device, scale=4)
model4.load_weights('RealESRGAN_x4.pth')
model8 = RealESRGAN(device, scale=8)
model8.load_weights('RealESRGAN_x8.pth')
def inference(image: Image, size: str) -> Image:
if size == '2x':
result = model2.predict(image.convert('RGB'))
elif size == '4x':
result = model4.predict(image.convert('RGB'))
else:
result = model8.predict(image.convert('RGB'))
return result
title = "Face Real ESRGAN: 2x 4x 8x"
description = "This is an unofficial demo for Real-ESRGAN. Scales the resolution of a photo. This model shows better results on faces compared to the original version.<br>Telegram BOT: https://t.me/restoration_photo_bot"
article = "<div style='text-align: center;'>Twitter <a href='https://twitter.com/DoEvent' target='_blank'>Max Skobeev</a> | <a href='https://huggingface.co/sberbank-ai/Real-ESRGAN' target='_blank'>Model card</a> <center><img src='https://visitor-badge.glitch.me/badge?page_id=max_skobeev_face_esrgan' alt='visitor badge'></center></div>"
gr.Interface(inference,
[gr.inputs.Image(type="pil"),
gr.inputs.Radio(['2x', '4x', '8x'],
type="value",
default='2x',
label='Resolution model')],
gr.outputs.Image(type="pil", label="Output"),
title=title,
description=description,
article=article,
examples=[['groot.jpeg', "2x"]],
allow_flagging='never',
theme="default",
cache_examples=False,
).queue().launch()
|