Spaces:
Running
on
T4
Running
on
T4
import math | |
import torch | |
from torch import nn as nn | |
from torch.nn import functional as F | |
from torch.nn import init as init | |
from torch.nn.modules.batchnorm import _BatchNorm | |
def default_init_weights(module_list, scale=1, bias_fill=0, **kwargs): | |
"""Initialize network weights. | |
Args: | |
module_list (list[nn.Module] | nn.Module): Modules to be initialized. | |
scale (float): Scale initialized weights, especially for residual | |
blocks. Default: 1. | |
bias_fill (float): The value to fill bias. Default: 0 | |
kwargs (dict): Other arguments for initialization function. | |
""" | |
if not isinstance(module_list, list): | |
module_list = [module_list] | |
for module in module_list: | |
for m in module.modules(): | |
if isinstance(m, nn.Conv2d): | |
init.kaiming_normal_(m.weight, **kwargs) | |
m.weight.data *= scale | |
if m.bias is not None: | |
m.bias.data.fill_(bias_fill) | |
elif isinstance(m, nn.Linear): | |
init.kaiming_normal_(m.weight, **kwargs) | |
m.weight.data *= scale | |
if m.bias is not None: | |
m.bias.data.fill_(bias_fill) | |
elif isinstance(m, _BatchNorm): | |
init.constant_(m.weight, 1) | |
if m.bias is not None: | |
m.bias.data.fill_(bias_fill) | |
def make_layer(basic_block, num_basic_block, **kwarg): | |
"""Make layers by stacking the same blocks. | |
Args: | |
basic_block (nn.module): nn.module class for basic block. | |
num_basic_block (int): number of blocks. | |
Returns: | |
nn.Sequential: Stacked blocks in nn.Sequential. | |
""" | |
layers = [] | |
for _ in range(num_basic_block): | |
layers.append(basic_block(**kwarg)) | |
return nn.Sequential(*layers) | |
class ResidualBlockNoBN(nn.Module): | |
"""Residual block without BN. | |
It has a style of: | |
---Conv-ReLU-Conv-+- | |
|________________| | |
Args: | |
num_feat (int): Channel number of intermediate features. | |
Default: 64. | |
res_scale (float): Residual scale. Default: 1. | |
pytorch_init (bool): If set to True, use pytorch default init, | |
otherwise, use default_init_weights. Default: False. | |
""" | |
def __init__(self, num_feat=64, res_scale=1, pytorch_init=False): | |
super(ResidualBlockNoBN, self).__init__() | |
self.res_scale = res_scale | |
self.conv1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True) | |
self.conv2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True) | |
self.relu = nn.ReLU(inplace=True) | |
if not pytorch_init: | |
default_init_weights([self.conv1, self.conv2], 0.1) | |
def forward(self, x): | |
identity = x | |
out = self.conv2(self.relu(self.conv1(x))) | |
return identity + out * self.res_scale | |
class Upsample(nn.Sequential): | |
"""Upsample module. | |
Args: | |
scale (int): Scale factor. Supported scales: 2^n and 3. | |
num_feat (int): Channel number of intermediate features. | |
""" | |
def __init__(self, scale, num_feat): | |
m = [] | |
if (scale & (scale - 1)) == 0: # scale = 2^n | |
for _ in range(int(math.log(scale, 2))): | |
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1)) | |
m.append(nn.PixelShuffle(2)) | |
elif scale == 3: | |
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1)) | |
m.append(nn.PixelShuffle(3)) | |
else: | |
raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.') | |
super(Upsample, self).__init__(*m) | |
def flow_warp(x, flow, interp_mode='bilinear', padding_mode='zeros', align_corners=True): | |
"""Warp an image or feature map with optical flow. | |
Args: | |
x (Tensor): Tensor with size (n, c, h, w). | |
flow (Tensor): Tensor with size (n, h, w, 2), normal value. | |
interp_mode (str): 'nearest' or 'bilinear'. Default: 'bilinear'. | |
padding_mode (str): 'zeros' or 'border' or 'reflection'. | |
Default: 'zeros'. | |
align_corners (bool): Before pytorch 1.3, the default value is | |
align_corners=True. After pytorch 1.3, the default value is | |
align_corners=False. Here, we use the True as default. | |
Returns: | |
Tensor: Warped image or feature map. | |
""" | |
assert x.size()[-2:] == flow.size()[1:3] | |
_, _, h, w = x.size() | |
# create mesh grid | |
grid_y, grid_x = torch.meshgrid(torch.arange(0, h).type_as(x), torch.arange(0, w).type_as(x)) | |
grid = torch.stack((grid_x, grid_y), 2).float() # W(x), H(y), 2 | |
grid.requires_grad = False | |
vgrid = grid + flow | |
# scale grid to [-1,1] | |
vgrid_x = 2.0 * vgrid[:, :, :, 0] / max(w - 1, 1) - 1.0 | |
vgrid_y = 2.0 * vgrid[:, :, :, 1] / max(h - 1, 1) - 1.0 | |
vgrid_scaled = torch.stack((vgrid_x, vgrid_y), dim=3) | |
output = F.grid_sample(x, vgrid_scaled, mode=interp_mode, padding_mode=padding_mode, align_corners=align_corners) | |
# TODO, what if align_corners=False | |
return output | |
def resize_flow(flow, size_type, sizes, interp_mode='bilinear', align_corners=False): | |
"""Resize a flow according to ratio or shape. | |
Args: | |
flow (Tensor): Precomputed flow. shape [N, 2, H, W]. | |
size_type (str): 'ratio' or 'shape'. | |
sizes (list[int | float]): the ratio for resizing or the final output | |
shape. | |
1) The order of ratio should be [ratio_h, ratio_w]. For | |
downsampling, the ratio should be smaller than 1.0 (i.e., ratio | |
< 1.0). For upsampling, the ratio should be larger than 1.0 (i.e., | |
ratio > 1.0). | |
2) The order of output_size should be [out_h, out_w]. | |
interp_mode (str): The mode of interpolation for resizing. | |
Default: 'bilinear'. | |
align_corners (bool): Whether align corners. Default: False. | |
Returns: | |
Tensor: Resized flow. | |
""" | |
_, _, flow_h, flow_w = flow.size() | |
if size_type == 'ratio': | |
output_h, output_w = int(flow_h * sizes[0]), int(flow_w * sizes[1]) | |
elif size_type == 'shape': | |
output_h, output_w = sizes[0], sizes[1] | |
else: | |
raise ValueError(f'Size type should be ratio or shape, but got type {size_type}.') | |
input_flow = flow.clone() | |
ratio_h = output_h / flow_h | |
ratio_w = output_w / flow_w | |
input_flow[:, 0, :, :] *= ratio_w | |
input_flow[:, 1, :, :] *= ratio_h | |
resized_flow = F.interpolate( | |
input=input_flow, size=(output_h, output_w), mode=interp_mode, align_corners=align_corners) | |
return resized_flow | |
# TODO: may write a cpp file | |
def pixel_unshuffle(x, scale): | |
""" Pixel unshuffle. | |
Args: | |
x (Tensor): Input feature with shape (b, c, hh, hw). | |
scale (int): Downsample ratio. | |
Returns: | |
Tensor: the pixel unshuffled feature. | |
""" | |
b, c, hh, hw = x.size() | |
out_channel = c * (scale**2) | |
assert hh % scale == 0 and hw % scale == 0 | |
h = hh // scale | |
w = hw // scale | |
x_view = x.view(b, c, h, scale, w, scale) | |
return x_view.permute(0, 1, 3, 5, 2, 4).reshape(b, out_channel, h, w) |