File size: 3,383 Bytes
3f9b2ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca4921e
3f9b2ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca4921e
3f9b2ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14ad65f
3f9b2ec
 
 
 
 
 
 
d10a203
 
 
 
c1b284c
3f9b2ec
 
 
 
 
 
 
 
d10a203
 
 
 
 
 
 
 
 
 
edd872f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
from PIL import Image
import requests
import torch
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

import gradio as gr
from models.blip import blip_decoder

image_size = 384
transform = transforms.Compose([
    transforms.Resize((image_size,image_size),interpolation=InterpolationMode.BICUBIC),
    transforms.ToTensor(),
    transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
    ]) 

model_url = 'model_large_caption.pth'
    
model = blip_decoder(pretrained=model_url, image_size=384, vit='large')
model.eval()
model = model.to(device)


from models.blip_vqa import blip_vqa

image_size_vq = 480
transform_vq = transforms.Compose([
    transforms.Resize((image_size_vq,image_size_vq),interpolation=InterpolationMode.BICUBIC),
    transforms.ToTensor(),
    transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
    ]) 

model_url_vq = 'model_vqa.pth'
    
model_vq = blip_vqa(pretrained=model_url_vq, image_size=480, vit='base')
model_vq.eval()
model_vq = model_vq.to(device)



def inference(raw_image, model_n, question, strategy):
    if model_n == 'Image Captioning':
        image = transform(raw_image).unsqueeze(0).to(device)   
        with torch.no_grad():
          if strategy == "Beam search":
              caption = model.generate(image, sample=False, num_beams=3, max_length=20, min_length=5)
          else:
              caption = model.generate(image, sample=True, top_p=0.9, max_length=20, min_length=5)
          return caption[0]

    else:   
        image_vq = transform_vq(raw_image).unsqueeze(0).to(device)  
        with torch.no_grad():
            answer = model_vq(image_vq, question, train=False, inference='generate') 
        return  'answer: '+answer[0]
    
inputs = [gr.Image(type='pil'), 
          gr.Radio(choices=['Image Captioning',"Visual Question Answering"], type="value", value="Image Captioning", label="Task"),
          gr.Textbox(lines=2, label="Question"),
          gr.Radio(choices=['Beam search','Nucleus sampling'], type="value", value="Nucleus sampling", label="Caption Decoding Strategy")]
outputs = gr.Textbox(label="Output")

title = "BLIP"

description = "Gradio demo for BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation (Salesforce Research). To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."

article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2201.12086' target='_blank'>BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation</a> | <a href='https://github.com/salesforce/BLIP' target='_blank'>Github Repo</a></p>"


demo = gr.Interface(inference, 
                    inputs, 
                    outputs, 
                    title=title, 
                    description=description, 
                    article=article, 
                    examples=[['starrynight.jpeg',"Image Captioning","None","Nucleus sampling"]],
                    allow_flagging='never',
                    cache_examples="lazy",
                    delete_cache=(4000, 4000))
demo.queue(default_concurrency_limit=1).launch(show_error=True)