doevent commited on
Commit
28b3be8
1 Parent(s): db833d7

Upload pretrain.py

Browse files
Files changed (1) hide show
  1. pretrain.py +173 -0
pretrain.py ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+ * Copyright (c) 2022, salesforce.com, inc.
3
+ * All rights reserved.
4
+ * SPDX-License-Identifier: BSD-3-Clause
5
+ * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
6
+ * By Junnan Li
7
+ '''
8
+ import argparse
9
+ import os
10
+ import ruamel_yaml as yaml
11
+ import numpy as np
12
+ import random
13
+ import time
14
+ import datetime
15
+ import json
16
+ from pathlib import Path
17
+
18
+ import torch
19
+ import torch.nn as nn
20
+ import torch.nn.functional as F
21
+ import torch.backends.cudnn as cudnn
22
+ import torch.distributed as dist
23
+ from torch.utils.data import DataLoader
24
+
25
+ from models.blip_pretrain import blip_pretrain
26
+ import utils
27
+ from utils import warmup_lr_schedule, step_lr_schedule
28
+ from data import create_dataset, create_sampler, create_loader
29
+
30
+ def train(model, data_loader, optimizer, epoch, device, config):
31
+ # train
32
+ model.train()
33
+
34
+ metric_logger = utils.MetricLogger(delimiter=" ")
35
+ metric_logger.add_meter('lr', utils.SmoothedValue(window_size=50, fmt='{value:.6f}'))
36
+ metric_logger.add_meter('loss_ita', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
37
+ metric_logger.add_meter('loss_itm', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
38
+ metric_logger.add_meter('loss_lm', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
39
+
40
+ header = 'Train Epoch: [{}]'.format(epoch)
41
+ print_freq = 50
42
+
43
+ if config['laion_path']:
44
+ data_loader.dataset.reload_laion(epoch)
45
+
46
+ data_loader.sampler.set_epoch(epoch)
47
+
48
+ for i, (image, caption) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
49
+
50
+ if epoch==0:
51
+ warmup_lr_schedule(optimizer, i, config['warmup_steps'], config['warmup_lr'], config['init_lr'])
52
+
53
+ optimizer.zero_grad()
54
+
55
+ image = image.to(device,non_blocking=True)
56
+
57
+ # ramp up alpha in the first 2 epochs
58
+ alpha = config['alpha']*min(1,(epoch*len(data_loader)+i)/(2*len(data_loader)))
59
+
60
+ loss_ita, loss_itm, loss_lm = model(image, caption, alpha = alpha)
61
+ loss = loss_ita + loss_itm + loss_lm
62
+
63
+ loss.backward()
64
+ optimizer.step()
65
+
66
+ metric_logger.update(loss_ita=loss_ita.item())
67
+ metric_logger.update(loss_itm=loss_itm.item())
68
+ metric_logger.update(loss_lm=loss_lm.item())
69
+ metric_logger.update(lr=optimizer.param_groups[0]["lr"])
70
+
71
+
72
+ # gather the stats from all processes
73
+ metric_logger.synchronize_between_processes()
74
+ print("Averaged stats:", metric_logger.global_avg())
75
+ return {k: "{:.3f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()}
76
+
77
+
78
+ def main(args, config):
79
+ utils.init_distributed_mode(args)
80
+
81
+ device = torch.device(args.device)
82
+
83
+ # fix the seed for reproducibility
84
+ seed = args.seed + utils.get_rank()
85
+ torch.manual_seed(seed)
86
+ np.random.seed(seed)
87
+ random.seed(seed)
88
+ cudnn.benchmark = True
89
+
90
+ #### Dataset ####
91
+ print("Creating dataset")
92
+ datasets = [create_dataset('pretrain', config, min_scale=0.2)]
93
+ print('number of training samples: %d'%len(datasets[0]))
94
+
95
+ num_tasks = utils.get_world_size()
96
+ global_rank = utils.get_rank()
97
+ samplers = create_sampler(datasets, [True], num_tasks, global_rank)
98
+
99
+ data_loader = create_loader(datasets,samplers,batch_size=[config['batch_size']], num_workers=[4], is_trains=[True], collate_fns=[None])[0]
100
+
101
+ #### Model ####
102
+ print("Creating model")
103
+ model = blip_pretrain(image_size=config['image_size'], vit=config['vit'], vit_grad_ckpt=config['vit_grad_ckpt'],
104
+ vit_ckpt_layer=config['vit_ckpt_layer'], queue_size=config['queue_size'])
105
+
106
+ model = model.to(device)
107
+
108
+ optimizer = torch.optim.AdamW(params=model.parameters(), lr=config['init_lr'], weight_decay=config['weight_decay'])
109
+
110
+ start_epoch = 0
111
+ if args.checkpoint:
112
+ checkpoint = torch.load(args.checkpoint, map_location='cpu')
113
+ state_dict = checkpoint['model']
114
+ model.load_state_dict(state_dict)
115
+
116
+ optimizer.load_state_dict(checkpoint['optimizer'])
117
+ start_epoch = checkpoint['epoch']+1
118
+ print('resume checkpoint from %s'%args.checkpoint)
119
+
120
+ model_without_ddp = model
121
+ if args.distributed:
122
+ model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
123
+ model_without_ddp = model.module
124
+
125
+ print("Start training")
126
+ start_time = time.time()
127
+ for epoch in range(start_epoch, config['max_epoch']):
128
+
129
+ step_lr_schedule(optimizer, epoch, config['init_lr'], config['min_lr'], config['lr_decay_rate'])
130
+
131
+ train_stats = train(model, data_loader, optimizer, epoch, device, config)
132
+ if utils.is_main_process():
133
+ log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
134
+ 'epoch': epoch,
135
+ }
136
+ save_obj = {
137
+ 'model': model_without_ddp.state_dict(),
138
+ 'optimizer': optimizer.state_dict(),
139
+ 'config': config,
140
+ 'epoch': epoch,
141
+ }
142
+ torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_%02d.pth'%epoch))
143
+
144
+ with open(os.path.join(args.output_dir, "log.txt"),"a") as f:
145
+ f.write(json.dumps(log_stats) + "\n")
146
+
147
+ dist.barrier()
148
+
149
+ total_time = time.time() - start_time
150
+ total_time_str = str(datetime.timedelta(seconds=int(total_time)))
151
+ print('Training time {}'.format(total_time_str))
152
+
153
+
154
+ if __name__ == '__main__':
155
+ parser = argparse.ArgumentParser()
156
+ parser.add_argument('--config', default='./configs/pretrain.yaml')
157
+ parser.add_argument('--output_dir', default='output/Pretrain')
158
+ parser.add_argument('--checkpoint', default='')
159
+ parser.add_argument('--evaluate', action='store_true')
160
+ parser.add_argument('--device', default='cuda')
161
+ parser.add_argument('--seed', default=42, type=int)
162
+ parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
163
+ parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
164
+ parser.add_argument('--distributed', default=True, type=bool)
165
+ args = parser.parse_args()
166
+
167
+ config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
168
+
169
+ Path(args.output_dir).mkdir(parents=True, exist_ok=True)
170
+
171
+ yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))
172
+
173
+ main(args, config)