Spaces:
Running
on
Zero
Running
on
Zero
import math | |
import torch | |
import torch.nn as nn | |
import numpy as np | |
import torch.nn.functional as F | |
from .utils import freeze | |
from tqdm import tqdm | |
import time | |
def nonlinearity(x): | |
return x*torch.sigmoid(x) | |
class SpatialNorm(nn.Module): | |
def __init__( | |
self, f_channels, zq_channels=None, norm_layer=nn.GroupNorm, freeze_norm_layer=False, add_conv=False, **norm_layer_params | |
): | |
super().__init__() | |
self.norm_layer = norm_layer(num_channels=f_channels, **norm_layer_params) | |
if zq_channels is not None: | |
if freeze_norm_layer: | |
for p in self.norm_layer.parameters: | |
p.requires_grad = False | |
self.add_conv = add_conv | |
if self.add_conv: | |
self.conv = nn.Conv2d(zq_channels, zq_channels, kernel_size=3, stride=1, padding=1) | |
self.conv_y = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0) | |
self.conv_b = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0) | |
def forward(self, f, zq=None): | |
norm_f = self.norm_layer(f) | |
if zq is not None: | |
f_size = f.shape[-2:] | |
zq = torch.nn.functional.interpolate(zq, size=f_size, mode="nearest") | |
if self.add_conv: | |
zq = self.conv(zq) | |
norm_f = norm_f * self.conv_y(zq) + self.conv_b(zq) | |
return norm_f | |
def Normalize(in_channels, zq_ch=None, add_conv=None): | |
return SpatialNorm( | |
in_channels, zq_ch, norm_layer=nn.GroupNorm, | |
freeze_norm_layer=False, add_conv=add_conv, num_groups=32, eps=1e-6, affine=True | |
) | |
class Upsample(nn.Module): | |
def __init__(self, in_channels, with_conv): | |
super().__init__() | |
self.with_conv = with_conv | |
if self.with_conv: | |
self.conv = torch.nn.Conv2d(in_channels, | |
in_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
def forward(self, x): | |
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") | |
if self.with_conv: | |
x = self.conv(x) | |
return x | |
class Downsample(nn.Module): | |
def __init__(self, in_channels, with_conv): | |
super().__init__() | |
self.with_conv = with_conv | |
if self.with_conv: | |
self.conv = torch.nn.Conv2d(in_channels, | |
in_channels, | |
kernel_size=3, | |
stride=2, | |
padding=0) | |
def forward(self, x): | |
if self.with_conv: | |
pad = (0,1,0,1) | |
x = torch.nn.functional.pad(x, pad, mode="constant", value=0) | |
x = self.conv(x) | |
else: | |
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) | |
return x | |
class ResnetBlock(nn.Module): | |
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, | |
dropout, temb_channels=512, zq_ch=None, add_conv=False): | |
super().__init__() | |
self.in_channels = in_channels | |
out_channels = in_channels if out_channels is None else out_channels | |
self.out_channels = out_channels | |
self.use_conv_shortcut = conv_shortcut | |
self.norm1 = Normalize(in_channels, zq_ch, add_conv=add_conv) | |
self.conv1 = torch.nn.Conv2d(in_channels, | |
out_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
if temb_channels > 0: | |
self.temb_proj = torch.nn.Linear(temb_channels, | |
out_channels) | |
self.norm2 = Normalize(out_channels, zq_ch, add_conv=add_conv) | |
self.dropout = torch.nn.Dropout(dropout) | |
self.conv2 = torch.nn.Conv2d(out_channels, | |
out_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
if self.in_channels != self.out_channels: | |
if self.use_conv_shortcut: | |
self.conv_shortcut = torch.nn.Conv2d(in_channels, | |
out_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
else: | |
self.nin_shortcut = torch.nn.Conv2d(in_channels, | |
out_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
def forward(self, x, temb, zq=None): | |
h = x | |
h = self.norm1(h, zq) | |
h = nonlinearity(h) | |
h = self.conv1(h) | |
if temb is not None: | |
h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None] | |
h = self.norm2(h, zq) | |
h = nonlinearity(h) | |
h = self.dropout(h) | |
h = self.conv2(h) | |
if self.in_channels != self.out_channels: | |
if self.use_conv_shortcut: | |
x = self.conv_shortcut(x) | |
else: | |
x = self.nin_shortcut(x) | |
return x+h | |
class AttnBlock(nn.Module): | |
def __init__(self, in_channels, zq_ch=None, add_conv=False): | |
super().__init__() | |
self.in_channels = in_channels | |
self.norm = Normalize(in_channels, zq_ch, add_conv=add_conv) | |
self.q = torch.nn.Conv2d(in_channels, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
self.k = torch.nn.Conv2d(in_channels, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
self.v = torch.nn.Conv2d(in_channels, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
self.proj_out = torch.nn.Conv2d(in_channels, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
def forward(self, x, zq=None): | |
h_ = x | |
h_ = self.norm(h_, zq) | |
q = self.q(h_) | |
k = self.k(h_) | |
v = self.v(h_) | |
# compute attention | |
b,c,h,w = q.shape | |
q = q.reshape(b,c,h*w) | |
q = q.permute(0,2,1) # b,hw,c | |
k = k.reshape(b,c,h*w) # b,c,hw | |
w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] | |
w_ = w_ * (int(c)**(-0.5)) | |
w_ = torch.nn.functional.softmax(w_, dim=2) | |
# attend to values | |
v = v.reshape(b,c,h*w) | |
w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q) | |
h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] | |
h_ = h_.reshape(b,c,h,w) | |
h_ = self.proj_out(h_) | |
return x+h_ | |
class Encoder(nn.Module): | |
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, | |
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, | |
resolution, z_channels, double_z=True, **ignore_kwargs): | |
super().__init__() | |
self.ch = ch | |
self.temb_ch = 0 | |
self.num_resolutions = len(ch_mult) | |
self.num_res_blocks = num_res_blocks | |
self.resolution = resolution | |
self.in_channels = in_channels | |
# downsampling | |
self.conv_in = torch.nn.Conv2d(in_channels, | |
self.ch, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
curr_res = resolution | |
in_ch_mult = (1,)+tuple(ch_mult) | |
self.down = nn.ModuleList() | |
for i_level in range(self.num_resolutions): | |
block = nn.ModuleList() | |
attn = nn.ModuleList() | |
block_in = ch*in_ch_mult[i_level] | |
block_out = ch*ch_mult[i_level] | |
for i_block in range(self.num_res_blocks): | |
block.append(ResnetBlock(in_channels=block_in, | |
out_channels=block_out, | |
temb_channels=self.temb_ch, | |
dropout=dropout)) | |
block_in = block_out | |
if curr_res in attn_resolutions: | |
attn.append(AttnBlock(block_in)) | |
down = nn.Module() | |
down.block = block | |
down.attn = attn | |
if i_level != self.num_resolutions-1: | |
down.downsample = Downsample(block_in, resamp_with_conv) | |
curr_res = curr_res // 2 | |
self.down.append(down) | |
# middle | |
self.mid = nn.Module() | |
self.mid.block_1 = ResnetBlock(in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout) | |
self.mid.attn_1 = AttnBlock(block_in) | |
self.mid.block_2 = ResnetBlock(in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout) | |
# end | |
self.norm_out = Normalize(block_in) | |
self.conv_out = torch.nn.Conv2d(block_in, | |
2*z_channels if double_z else z_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
def forward(self, x): | |
temb = None | |
# downsampling | |
hs = [self.conv_in(x)] | |
for i_level in range(self.num_resolutions): | |
for i_block in range(self.num_res_blocks): | |
h = self.down[i_level].block[i_block](hs[-1], temb) | |
if len(self.down[i_level].attn) > 0: | |
h = self.down[i_level].attn[i_block](h) | |
hs.append(h) | |
if i_level != self.num_resolutions-1: | |
hs.append(self.down[i_level].downsample(hs[-1])) | |
# middle | |
h = hs[-1] | |
h = self.mid.block_1(h, temb) | |
h = self.mid.attn_1(h) | |
h = self.mid.block_2(h, temb) | |
# end | |
h = self.norm_out(h) | |
h = nonlinearity(h) | |
h = self.conv_out(h) | |
return h | |
class Decoder(nn.Module): | |
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, | |
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, | |
resolution, z_channels, give_pre_end=False, zq_ch=None, add_conv=False, **ignorekwargs): | |
super().__init__() | |
self.ch = ch | |
self.temb_ch = 0 | |
self.num_resolutions = len(ch_mult) | |
self.num_res_blocks = num_res_blocks | |
self.resolution = resolution | |
self.in_channels = in_channels | |
self.give_pre_end = give_pre_end | |
# compute in_ch_mult, block_in and curr_res at lowest res | |
in_ch_mult = (1,)+tuple(ch_mult) | |
block_in = ch*ch_mult[self.num_resolutions-1] | |
curr_res = resolution // 2**(self.num_resolutions-1) | |
self.z_shape = (1,z_channels,curr_res,curr_res) | |
# z to block_in | |
self.conv_in = torch.nn.Conv2d(z_channels, | |
block_in, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
# middle | |
self.mid = nn.Module() | |
self.mid.block_1 = ResnetBlock(in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout, | |
zq_ch=zq_ch, | |
add_conv=add_conv) | |
self.mid.attn_1 = AttnBlock(block_in, zq_ch, add_conv=add_conv) | |
self.mid.block_2 = ResnetBlock(in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout, | |
zq_ch=zq_ch, | |
add_conv=add_conv) | |
# upsampling | |
self.up = nn.ModuleList() | |
for i_level in reversed(range(self.num_resolutions)): | |
block = nn.ModuleList() | |
attn = nn.ModuleList() | |
block_out = ch*ch_mult[i_level] | |
for i_block in range(self.num_res_blocks+1): | |
block.append(ResnetBlock(in_channels=block_in, | |
out_channels=block_out, | |
temb_channels=self.temb_ch, | |
dropout=dropout, | |
zq_ch=zq_ch, | |
add_conv=add_conv)) | |
block_in = block_out | |
if curr_res in attn_resolutions: | |
attn.append(AttnBlock(block_in, zq_ch, add_conv=add_conv)) | |
up = nn.Module() | |
up.block = block | |
up.attn = attn | |
if i_level != 0: | |
up.upsample = Upsample(block_in, resamp_with_conv) | |
curr_res = curr_res * 2 | |
self.up.insert(0, up) # prepend to get consistent order | |
# end | |
self.norm_out = Normalize(block_in, zq_ch, add_conv=add_conv) | |
self.conv_out = torch.nn.Conv2d(block_in, | |
out_ch, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
def forward(self, z, zq): | |
#assert z.shape[1:] == self.z_shape[1:] | |
self.last_z_shape = z.shape | |
# timestep embedding | |
temb = None | |
# z to block_in | |
h = self.conv_in(z) | |
# middle | |
h = self.mid.block_1(h, temb, zq) | |
h = self.mid.attn_1(h, zq) | |
h = self.mid.block_2(h, temb, zq) | |
# upsampling | |
for i_level in reversed(range(self.num_resolutions)): | |
for i_block in range(self.num_res_blocks+1): | |
h = self.up[i_level].block[i_block](h, temb, zq) | |
if len(self.up[i_level].attn) > 0: | |
h = self.up[i_level].attn[i_block](h, zq) | |
if i_level != 0: | |
h = self.up[i_level].upsample(h) | |
# end | |
if self.give_pre_end: | |
return h | |
h = self.norm_out(h, zq) | |
h = nonlinearity(h) | |
h = self.conv_out(h) | |
return h | |
class MoVQ(nn.Module): | |
def __init__(self, generator_params): | |
super().__init__() | |
z_channels = generator_params["z_channels"] | |
self.encoder = Encoder(**generator_params) | |
self.quant_conv = torch.nn.Conv2d(z_channels, z_channels, 1) | |
self.post_quant_conv = torch.nn.Conv2d(z_channels, z_channels, 1) | |
self.decoder = Decoder(zq_ch=z_channels, **generator_params) | |
self.tile_sample_min_size = generator_params["tile_sample_min_size"] | |
self.scale_factor = 8 | |
self.tile_latent_min_size = int(self.tile_sample_min_size / self.scale_factor) | |
self.tile_overlap_factor_enc = generator_params["tile_overlap_factor_enc"] | |
self.tile_overlap_factor_dec = generator_params["tile_overlap_factor_dec"] | |
self.use_tiling = generator_params["use_tiling"] | |
def encode(self, x): | |
if self.use_tiling and ( | |
x.shape[-1] > self.tile_sample_min_size | |
or x.shape[-2] > self.tile_sample_min_size | |
): | |
print('tiled_encode') | |
return self.tiled_encode(x) | |
h = self.encoder(x) | |
h = self.quant_conv(h) | |
return h | |
def decode(self, quant): | |
if self.use_tiling and ( | |
quant.shape[-1] > self.tile_latent_min_size | |
or quant.shape[-2] > self.tile_latent_min_size | |
): | |
print('tiled_decode') | |
return self.tiled_decode(quant) | |
decoder_input = self.post_quant_conv(quant) | |
decoded = self.decoder(decoder_input, quant) | |
return decoded | |
def blend_v( | |
self, a: torch.Tensor, b: torch.Tensor, blend_extent: int | |
) -> torch.Tensor: | |
blend_extent = min(a.shape[2], b.shape[2], blend_extent) | |
for y in range(blend_extent): | |
b[ :, :, y, :] = a[ :, :, -blend_extent + y, :] * ( | |
1 - y / blend_extent | |
) + b[ :, :, y, :] * (y / blend_extent) | |
return b | |
def blend_h( | |
self, a: torch.Tensor, b: torch.Tensor, blend_extent: int | |
) -> torch.Tensor: | |
blend_extent = min(a.shape[3], b.shape[3], blend_extent) | |
for x in range(blend_extent): | |
b[ :, :, :, x] = a[ :, :, :, -blend_extent + x] * ( | |
1 - x / blend_extent | |
) + b[ :, :, :, x] * (x / blend_extent) | |
return b | |
def tiled_encode(self, x): | |
overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor_enc)) | |
blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor_enc) | |
row_limit = self.tile_latent_min_size - blend_extent | |
# Split the image into tiles and encode them separately. | |
rows = [] | |
for i in tqdm(range(0, x.shape[2], overlap_size)): | |
row = [] | |
for j in range(0, x.shape[3], overlap_size): | |
tile = x[ | |
:, | |
:, | |
i : i + self.tile_sample_min_size, | |
j : j + self.tile_sample_min_size, | |
] | |
tile = self.encode(tile) | |
row.append(tile) | |
rows.append(row) | |
result_rows = [] | |
for i, row in enumerate(rows): | |
result_row = [] | |
for j, tile in enumerate(row): | |
# blend the above tile and the left tile | |
# to the current tile and add the current tile to the result row | |
if i > 0: | |
tile = self.blend_v(rows[i - 1][j], tile, blend_extent) | |
if j > 0: | |
tile = self.blend_h(row[j - 1], tile, blend_extent) | |
result_row.append(tile[ :, :, :row_limit, :row_limit]) | |
result_rows.append(torch.cat(result_row, dim=3)) | |
h = torch.cat(result_rows, dim=2) | |
return h | |
def tiled_decode(self, z): | |
overlap_size = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor_dec)) | |
blend_extent = int(self.tile_sample_min_size * self.tile_overlap_factor_dec) | |
row_limit = self.tile_sample_min_size - blend_extent | |
# Split z into overlapping tiles and decode them separately. | |
# The tiles have an overlap to avoid seams between tiles. | |
rows = [] | |
for i in tqdm(range(0, z.shape[2], overlap_size)): | |
row = [] | |
for j in range(0, z.shape[3], overlap_size): | |
tile = z[ | |
:, | |
:, | |
i : i + self.tile_latent_min_size, | |
j : j + self.tile_latent_min_size, | |
] | |
decoded = self.decode(tile) | |
row.append(decoded) | |
rows.append(row) | |
result_rows = [] | |
for i, row in enumerate(rows): | |
result_row = [] | |
for j, tile in enumerate(row): | |
# blend the above tile and the left tile | |
# to the current tile and add the current tile to the result row | |
if i > 0: | |
tile = self.blend_v(rows[i - 1][j], tile, blend_extent) | |
if j > 0: | |
tile = self.blend_h(row[j - 1], tile, blend_extent) | |
result_row.append(tile[ :, :, :row_limit, :row_limit]) | |
result_rows.append(torch.cat(result_row, dim=3)) | |
dec = torch.cat(result_rows, dim=2) | |
return dec | |
def get_vae(conf): | |
movq = MoVQ(conf.params) | |
if conf.checkpoint is not None: | |
movq_state_dict = torch.load(conf.checkpoint) | |
movq.load_state_dict(movq_state_dict) | |
movq = freeze(movq) | |
return movq | |