import math import torch import torch.nn as nn import numpy as np import torch.nn.functional as F from .utils import freeze from tqdm import tqdm import time def nonlinearity(x): return x*torch.sigmoid(x) class SpatialNorm(nn.Module): def __init__( self, f_channels, zq_channels=None, norm_layer=nn.GroupNorm, freeze_norm_layer=False, add_conv=False, **norm_layer_params ): super().__init__() self.norm_layer = norm_layer(num_channels=f_channels, **norm_layer_params) if zq_channels is not None: if freeze_norm_layer: for p in self.norm_layer.parameters: p.requires_grad = False self.add_conv = add_conv if self.add_conv: self.conv = nn.Conv2d(zq_channels, zq_channels, kernel_size=3, stride=1, padding=1) self.conv_y = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0) self.conv_b = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0) def forward(self, f, zq=None): norm_f = self.norm_layer(f) if zq is not None: f_size = f.shape[-2:] zq = torch.nn.functional.interpolate(zq, size=f_size, mode="nearest") if self.add_conv: zq = self.conv(zq) norm_f = norm_f * self.conv_y(zq) + self.conv_b(zq) return norm_f def Normalize(in_channels, zq_ch=None, add_conv=None): return SpatialNorm( in_channels, zq_ch, norm_layer=nn.GroupNorm, freeze_norm_layer=False, add_conv=add_conv, num_groups=32, eps=1e-6, affine=True ) class Upsample(nn.Module): def __init__(self, in_channels, with_conv): super().__init__() self.with_conv = with_conv if self.with_conv: self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) def forward(self, x): x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") if self.with_conv: x = self.conv(x) return x class Downsample(nn.Module): def __init__(self, in_channels, with_conv): super().__init__() self.with_conv = with_conv if self.with_conv: self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0) def forward(self, x): if self.with_conv: pad = (0,1,0,1) x = torch.nn.functional.pad(x, pad, mode="constant", value=0) x = self.conv(x) else: x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) return x class ResnetBlock(nn.Module): def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout, temb_channels=512, zq_ch=None, add_conv=False): super().__init__() self.in_channels = in_channels out_channels = in_channels if out_channels is None else out_channels self.out_channels = out_channels self.use_conv_shortcut = conv_shortcut self.norm1 = Normalize(in_channels, zq_ch, add_conv=add_conv) self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) if temb_channels > 0: self.temb_proj = torch.nn.Linear(temb_channels, out_channels) self.norm2 = Normalize(out_channels, zq_ch, add_conv=add_conv) self.dropout = torch.nn.Dropout(dropout) self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) if self.in_channels != self.out_channels: if self.use_conv_shortcut: self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) else: self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) def forward(self, x, temb, zq=None): h = x h = self.norm1(h, zq) h = nonlinearity(h) h = self.conv1(h) if temb is not None: h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None] h = self.norm2(h, zq) h = nonlinearity(h) h = self.dropout(h) h = self.conv2(h) if self.in_channels != self.out_channels: if self.use_conv_shortcut: x = self.conv_shortcut(x) else: x = self.nin_shortcut(x) return x+h class AttnBlock(nn.Module): def __init__(self, in_channels, zq_ch=None, add_conv=False): super().__init__() self.in_channels = in_channels self.norm = Normalize(in_channels, zq_ch, add_conv=add_conv) self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) def forward(self, x, zq=None): h_ = x h_ = self.norm(h_, zq) q = self.q(h_) k = self.k(h_) v = self.v(h_) # compute attention b,c,h,w = q.shape q = q.reshape(b,c,h*w) q = q.permute(0,2,1) # b,hw,c k = k.reshape(b,c,h*w) # b,c,hw w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] w_ = w_ * (int(c)**(-0.5)) w_ = torch.nn.functional.softmax(w_, dim=2) # attend to values v = v.reshape(b,c,h*w) w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q) h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] h_ = h_.reshape(b,c,h,w) h_ = self.proj_out(h_) return x+h_ class Encoder(nn.Module): def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, resolution, z_channels, double_z=True, **ignore_kwargs): super().__init__() self.ch = ch self.temb_ch = 0 self.num_resolutions = len(ch_mult) self.num_res_blocks = num_res_blocks self.resolution = resolution self.in_channels = in_channels # downsampling self.conv_in = torch.nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1) curr_res = resolution in_ch_mult = (1,)+tuple(ch_mult) self.down = nn.ModuleList() for i_level in range(self.num_resolutions): block = nn.ModuleList() attn = nn.ModuleList() block_in = ch*in_ch_mult[i_level] block_out = ch*ch_mult[i_level] for i_block in range(self.num_res_blocks): block.append(ResnetBlock(in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout)) block_in = block_out if curr_res in attn_resolutions: attn.append(AttnBlock(block_in)) down = nn.Module() down.block = block down.attn = attn if i_level != self.num_resolutions-1: down.downsample = Downsample(block_in, resamp_with_conv) curr_res = curr_res // 2 self.down.append(down) # middle self.mid = nn.Module() self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout) self.mid.attn_1 = AttnBlock(block_in) self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout) # end self.norm_out = Normalize(block_in) self.conv_out = torch.nn.Conv2d(block_in, 2*z_channels if double_z else z_channels, kernel_size=3, stride=1, padding=1) def forward(self, x): temb = None # downsampling hs = [self.conv_in(x)] for i_level in range(self.num_resolutions): for i_block in range(self.num_res_blocks): h = self.down[i_level].block[i_block](hs[-1], temb) if len(self.down[i_level].attn) > 0: h = self.down[i_level].attn[i_block](h) hs.append(h) if i_level != self.num_resolutions-1: hs.append(self.down[i_level].downsample(hs[-1])) # middle h = hs[-1] h = self.mid.block_1(h, temb) h = self.mid.attn_1(h) h = self.mid.block_2(h, temb) # end h = self.norm_out(h) h = nonlinearity(h) h = self.conv_out(h) return h class Decoder(nn.Module): def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, resolution, z_channels, give_pre_end=False, zq_ch=None, add_conv=False, **ignorekwargs): super().__init__() self.ch = ch self.temb_ch = 0 self.num_resolutions = len(ch_mult) self.num_res_blocks = num_res_blocks self.resolution = resolution self.in_channels = in_channels self.give_pre_end = give_pre_end # compute in_ch_mult, block_in and curr_res at lowest res in_ch_mult = (1,)+tuple(ch_mult) block_in = ch*ch_mult[self.num_resolutions-1] curr_res = resolution // 2**(self.num_resolutions-1) self.z_shape = (1,z_channels,curr_res,curr_res) # z to block_in self.conv_in = torch.nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1) # middle self.mid = nn.Module() self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout, zq_ch=zq_ch, add_conv=add_conv) self.mid.attn_1 = AttnBlock(block_in, zq_ch, add_conv=add_conv) self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout, zq_ch=zq_ch, add_conv=add_conv) # upsampling self.up = nn.ModuleList() for i_level in reversed(range(self.num_resolutions)): block = nn.ModuleList() attn = nn.ModuleList() block_out = ch*ch_mult[i_level] for i_block in range(self.num_res_blocks+1): block.append(ResnetBlock(in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout, zq_ch=zq_ch, add_conv=add_conv)) block_in = block_out if curr_res in attn_resolutions: attn.append(AttnBlock(block_in, zq_ch, add_conv=add_conv)) up = nn.Module() up.block = block up.attn = attn if i_level != 0: up.upsample = Upsample(block_in, resamp_with_conv) curr_res = curr_res * 2 self.up.insert(0, up) # prepend to get consistent order # end self.norm_out = Normalize(block_in, zq_ch, add_conv=add_conv) self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1) def forward(self, z, zq): #assert z.shape[1:] == self.z_shape[1:] self.last_z_shape = z.shape # timestep embedding temb = None # z to block_in h = self.conv_in(z) # middle h = self.mid.block_1(h, temb, zq) h = self.mid.attn_1(h, zq) h = self.mid.block_2(h, temb, zq) # upsampling for i_level in reversed(range(self.num_resolutions)): for i_block in range(self.num_res_blocks+1): h = self.up[i_level].block[i_block](h, temb, zq) if len(self.up[i_level].attn) > 0: h = self.up[i_level].attn[i_block](h, zq) if i_level != 0: h = self.up[i_level].upsample(h) # end if self.give_pre_end: return h h = self.norm_out(h, zq) h = nonlinearity(h) h = self.conv_out(h) return h class MoVQ(nn.Module): def __init__(self, generator_params): super().__init__() z_channels = generator_params["z_channels"] self.encoder = Encoder(**generator_params) self.quant_conv = torch.nn.Conv2d(z_channels, z_channels, 1) self.post_quant_conv = torch.nn.Conv2d(z_channels, z_channels, 1) self.decoder = Decoder(zq_ch=z_channels, **generator_params) self.tile_sample_min_size = generator_params["tile_sample_min_size"] self.scale_factor = 8 self.tile_latent_min_size = int(self.tile_sample_min_size / self.scale_factor) self.tile_overlap_factor_enc = generator_params["tile_overlap_factor_enc"] self.tile_overlap_factor_dec = generator_params["tile_overlap_factor_dec"] self.use_tiling = generator_params["use_tiling"] @torch.no_grad() def encode(self, x): if self.use_tiling and ( x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size ): print('tiled_encode') return self.tiled_encode(x) h = self.encoder(x) h = self.quant_conv(h) return h @torch.no_grad() def decode(self, quant): if self.use_tiling and ( quant.shape[-1] > self.tile_latent_min_size or quant.shape[-2] > self.tile_latent_min_size ): print('tiled_decode') return self.tiled_decode(quant) decoder_input = self.post_quant_conv(quant) decoded = self.decoder(decoder_input, quant) return decoded def blend_v( self, a: torch.Tensor, b: torch.Tensor, blend_extent: int ) -> torch.Tensor: blend_extent = min(a.shape[2], b.shape[2], blend_extent) for y in range(blend_extent): b[ :, :, y, :] = a[ :, :, -blend_extent + y, :] * ( 1 - y / blend_extent ) + b[ :, :, y, :] * (y / blend_extent) return b def blend_h( self, a: torch.Tensor, b: torch.Tensor, blend_extent: int ) -> torch.Tensor: blend_extent = min(a.shape[3], b.shape[3], blend_extent) for x in range(blend_extent): b[ :, :, :, x] = a[ :, :, :, -blend_extent + x] * ( 1 - x / blend_extent ) + b[ :, :, :, x] * (x / blend_extent) return b def tiled_encode(self, x): overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor_enc)) blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor_enc) row_limit = self.tile_latent_min_size - blend_extent # Split the image into tiles and encode them separately. rows = [] for i in tqdm(range(0, x.shape[2], overlap_size)): row = [] for j in range(0, x.shape[3], overlap_size): tile = x[ :, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size, ] tile = self.encode(tile) row.append(tile) rows.append(row) result_rows = [] for i, row in enumerate(rows): result_row = [] for j, tile in enumerate(row): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: tile = self.blend_v(rows[i - 1][j], tile, blend_extent) if j > 0: tile = self.blend_h(row[j - 1], tile, blend_extent) result_row.append(tile[ :, :, :row_limit, :row_limit]) result_rows.append(torch.cat(result_row, dim=3)) h = torch.cat(result_rows, dim=2) return h def tiled_decode(self, z): overlap_size = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor_dec)) blend_extent = int(self.tile_sample_min_size * self.tile_overlap_factor_dec) row_limit = self.tile_sample_min_size - blend_extent # Split z into overlapping tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. rows = [] for i in tqdm(range(0, z.shape[2], overlap_size)): row = [] for j in range(0, z.shape[3], overlap_size): tile = z[ :, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size, ] decoded = self.decode(tile) row.append(decoded) rows.append(row) result_rows = [] for i, row in enumerate(rows): result_row = [] for j, tile in enumerate(row): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: tile = self.blend_v(rows[i - 1][j], tile, blend_extent) if j > 0: tile = self.blend_h(row[j - 1], tile, blend_extent) result_row.append(tile[ :, :, :row_limit, :row_limit]) result_rows.append(torch.cat(result_row, dim=3)) dec = torch.cat(result_rows, dim=2) return dec def get_vae(conf): movq = MoVQ(conf.params) if conf.checkpoint is not None: movq_state_dict = torch.load(conf.checkpoint) movq.load_state_dict(movq_state_dict) movq = freeze(movq) return movq