DRBAPH commited on
Commit
e06cbbd
β€’
1 Parent(s): ddc5a5a
Files changed (1) hide show
  1. app.py +147 -0
app.py ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torchaudio
3
+ from einops import rearrange
4
+ from stable_audio_tools import get_pretrained_model
5
+ from stable_audio_tools.inference.generation import generate_diffusion_cond
6
+ from pydub import AudioSegment
7
+ import re
8
+ import os
9
+ from datetime import datetime
10
+ import gradio as gr
11
+
12
+ # Define the function to generate audio based on a prompt
13
+ def generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_time, seed, sampler_type, model_half):
14
+ device = "cuda" if torch.cuda.is_available() else "cpu"
15
+
16
+ # Download model
17
+ model, model_config = get_pretrained_model("audo/stable-audio-open-1.0")
18
+ sample_rate = model_config["sample_rate"]
19
+ sample_size = model_config["sample_size"]
20
+
21
+ model = model.to(device)
22
+
23
+ # Print model data type before conversion
24
+ print("Model data type before conversion:", next(model.parameters()).dtype)
25
+
26
+ # Convert model to float16 if model_half is True
27
+ if model_half:
28
+ model = model.to(torch.float16)
29
+
30
+ # Print model data type after conversion
31
+ print("Model data type after conversion:", next(model.parameters()).dtype)
32
+
33
+ # Set up text and timing conditioning
34
+ conditioning = [{
35
+ "prompt": prompt,
36
+ "seconds_start": 0,
37
+ "seconds_total": generation_time
38
+ }]
39
+
40
+ # Generate stereo audio
41
+ output = generate_diffusion_cond(
42
+ model,
43
+ steps=steps,
44
+ cfg_scale=cfg_scale,
45
+ conditioning=conditioning,
46
+ sample_size=sample_size,
47
+ sigma_min=sigma_min,
48
+ sigma_max=sigma_max,
49
+ sampler_type=sampler_type,
50
+ device=device,
51
+ seed=seed
52
+ )
53
+
54
+ # Print output data type
55
+ print("Output data type:", output.dtype)
56
+
57
+ # Rearrange audio batch to a single sequence
58
+ output = rearrange(output, "b d n -> d (b n)")
59
+
60
+ # Peak normalize, clip, and convert to int16 directly if model_half is used
61
+ output = output.div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767)
62
+ if model_half:
63
+ output = output.to(torch.int16).cpu()
64
+ else:
65
+ output = output.to(torch.float32).to(torch.int16).cpu()
66
+
67
+ torchaudio.save("temp_output.wav", output, sample_rate)
68
+
69
+ # Convert to MP3 format using pydub
70
+ audio = AudioSegment.from_wav("temp_output.wav")
71
+
72
+ # Create Output folder and dated subfolder if they do not exist
73
+ output_folder = "Output"
74
+ date_folder = datetime.now().strftime("%Y-%m-%d")
75
+ save_path = os.path.join(output_folder, date_folder)
76
+ os.makedirs(save_path, exist_ok=True)
77
+
78
+ # Generate a filename based on the prompt
79
+ filename = re.sub(r'\W+', '_', prompt) + ".mp3" # Replace non-alphanumeric characters with underscores
80
+ full_path = os.path.join(save_path, filename)
81
+
82
+ # Ensure the filename is unique by appending a number if the file already exists
83
+ base_filename = filename
84
+ counter = 1
85
+ while os.path.exists(full_path):
86
+ filename = f"{base_filename[:-4]}_{counter}.mp3"
87
+ full_path = os.path.join(save_path, filename)
88
+ counter += 1
89
+
90
+ # Export the audio to MP3 format
91
+ audio.export(full_path, format="mp3")
92
+
93
+ return full_path
94
+
95
+ def audio_generator(prompt, sampler_type, steps, cfg_scale, sigma_min, sigma_max, generation_time, seed, model_half):
96
+ try:
97
+ print("Generating audio with parameters:")
98
+ print("Prompt:", prompt)
99
+ print("Sampler Type:", sampler_type)
100
+ print("Steps:", steps)
101
+ print("CFG Scale:", cfg_scale)
102
+ print("Sigma Min:", sigma_min)
103
+ print("Sigma Max:", sigma_max)
104
+ print("Generation Time:", generation_time)
105
+ print("Seed:", seed)
106
+ print("Model Half Precision:", model_half)
107
+
108
+ filename = generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_time, seed, sampler_type, model_half)
109
+ return gr.Audio(filename), f"Generated: {filename}"
110
+ except Exception as e:
111
+ return str(e)
112
+
113
+ # Create Gradio interface
114
+ prompt_textbox = gr.Textbox(lines=5, label="Prompt")
115
+ sampler_dropdown = gr.Dropdown(
116
+ label="Sampler Type",
117
+ choices=[
118
+ "dpmpp-3m-sde",
119
+ "dpmpp-2m-sde",
120
+ "k-heun",
121
+ "k-lms",
122
+ "k-dpmpp-2s-ancestral",
123
+ "k-dpm-2",
124
+ "k-dpm-fast"
125
+ ],
126
+ value="dpmpp-3m-sde"
127
+ )
128
+ steps_slider = gr.Slider(minimum=0, maximum=200, label="Steps", step=1, value=100)
129
+ cfg_scale_slider = gr.Slider(minimum=0, maximum=15, label="CFG Scale", step=0.1, value=7)
130
+ sigma_min_slider = gr.Slider(minimum=0, maximum=50, label="Sigma Min", step=0.1, value=0.3)
131
+ sigma_max_slider = gr.Slider(minimum=0, maximum=1000, label="Sigma Max", step=0.1, value=500)
132
+ generation_time_slider = gr.Slider(minimum=0, maximum=47, label="Generation Time (seconds)", step=1, value=47)
133
+ seed_slider = gr.Slider(minimum=-1, maximum=999999, label="Seed", step=1, value=123456)
134
+ model_half_checkbox = gr.Checkbox(label="Low VRAM (float16)", value=False)
135
+
136
+ output_textbox = gr.Textbox(label="Output")
137
+
138
+ title = "πŸ’€πŸ”Š StableAudioWebUI πŸ’€πŸ”Š"
139
+ description = "[Github Repository](https://github.com/Saganaki22/StableAudioWebUI)"
140
+
141
+ gr.Interface(
142
+ audio_generator,
143
+ [prompt_textbox, sampler_dropdown, steps_slider, cfg_scale_slider, sigma_min_slider, sigma_max_slider, generation_time_slider, seed_slider, model_half_checkbox],
144
+ [gr.Audio(), output_textbox],
145
+ title=title,
146
+ description=description
147
+ ).launch()