# coding: utf-8 """ The entrance of the gradio """ import tyro import gradio as gr import os.path as osp from src.utils.helper import load_description from src.gradio_pipeline import GradioPipeline from src.config.crop_config import CropConfig from src.config.argument_config import ArgumentConfig from src.config.inference_config import InferenceConfig import gdown import os folder_url = f"https://drive.google.com/drive/folders/1UtKgzKjFAOmZkhNK-OYT0caJ_w2XAnib" gdown.download_folder(url=folder_url, output="pretrained_weights", quiet=False) def partial_fields(target_class, kwargs): return target_class(**{k: v for k, v in kwargs.items() if hasattr(target_class, k)}) # set tyro theme tyro.extras.set_accent_color("bright_cyan") args = tyro.cli(ArgumentConfig) # specify configs for inference inference_cfg = partial_fields(InferenceConfig, args.__dict__) # use attribute of args to initial InferenceConfig crop_cfg = partial_fields(CropConfig, args.__dict__) # use attribute of args to initial CropConfig gradio_pipeline = GradioPipeline( inference_cfg=inference_cfg, crop_cfg=crop_cfg, args=args ) # assets title_md = "assets/gradio_title.md" example_portrait_dir = "assets/examples/source" example_video_dir = "assets/examples/driving" data_examples = [ [osp.join(example_portrait_dir, "s9.jpg"), osp.join(example_video_dir, "d0.mp4"), True, True, True, True], [osp.join(example_portrait_dir, "s6.jpg"), osp.join(example_video_dir, "d0.mp4"), True, True, True, True], [osp.join(example_portrait_dir, "s10.jpg"), osp.join(example_video_dir, "d5.mp4"), True, True, True, True], [osp.join(example_portrait_dir, "s5.jpg"), osp.join(example_video_dir, "d6.mp4"), True, True, True, True], [osp.join(example_portrait_dir, "s7.jpg"), osp.join(example_video_dir, "d7.mp4"), True, True, True, True], ] #################### interface logic #################### # Define components first eye_retargeting_slider = gr.Slider(minimum=0, maximum=0.8, step=0.01, label="target eyes-open ratio") lip_retargeting_slider = gr.Slider(minimum=0, maximum=0.8, step=0.01, label="target lip-open ratio") retargeting_input_image = gr.Image(type="numpy") output_image = gr.Image(type="numpy") output_image_paste_back = gr.Image(type="numpy") output_video = gr.Video() output_video_concat = gr.Video() with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.HTML(load_description(title_md)) gr.Markdown(load_description("assets/gradio_description_upload.md")) with gr.Row(): with gr.Accordion(open=True, label="Source Portrait"): image_input = gr.Image(type="filepath") with gr.Accordion(open=True, label="Driving Video"): video_input = gr.Video() gr.Examples( examples=[[osp.join(example_portrait_dir, "s9.jpg")], [osp.join(example_video_dir, "d0.mp4")], [osp.join(example_video_dir, "d6.mp4")]], inputs=[video_input], cache_examples=False ) gr.Markdown(load_description("assets/gradio_description_animation.md")) with gr.Row(): with gr.Accordion(open=True, label="Animation Options"): with gr.Row(): flag_relative_input = gr.Checkbox(value=True, label="relative motion") flag_do_crop_input = gr.Checkbox(value=True, label="do crop") flag_remap_input = gr.Checkbox(value=True, label="paste-back") with gr.Row(): with gr.Column(): process_button_animation = gr.Button("๐Ÿš€ Animate", variant="primary") with gr.Column(): process_button_reset = gr.ClearButton([image_input, video_input, output_video, output_video_concat], value="๐Ÿงน Clear") with gr.Row(): with gr.Column(): with gr.Accordion(open=True, label="The animated video in the original image space"): output_video.render() with gr.Column(): with gr.Accordion(open=True, label="The animated video"): output_video_concat.render() with gr.Row(): # Examples gr.Markdown("## You could choose the examples below โฌ‡๏ธ") with gr.Row(): gr.Examples( examples=data_examples, inputs=[ image_input, video_input, flag_relative_input, flag_do_crop_input, flag_remap_input ], outputs=[output_image, output_image_paste_back], examples_per_page=5, cache_examples="lazy", fn=lambda *args: spaces.GPU()(gradio_pipeline.execute_video)(*args), ) gr.Markdown(load_description("assets/gradio_description_retargeting.md")) with gr.Row(): eye_retargeting_slider.render() lip_retargeting_slider.render() with gr.Row(): process_button_retargeting = gr.Button("๐Ÿš— Retargeting", variant="primary") process_button_reset_retargeting = gr.ClearButton( [ eye_retargeting_slider, lip_retargeting_slider, retargeting_input_image, output_image, output_image_paste_back ], value="๐Ÿงน Clear" ) with gr.Row(): with gr.Column(): with gr.Accordion(open=True, label="Retargeting Input"): retargeting_input_image.render() with gr.Column(): with gr.Accordion(open=True, label="Retargeting Result"): output_image.render() with gr.Column(): with gr.Accordion(open=True, label="Paste-back Result"): output_image_paste_back.render() # binding functions for buttons process_button_retargeting.click( fn=gradio_pipeline.execute_image, inputs=[eye_retargeting_slider, lip_retargeting_slider], outputs=[output_image, output_image_paste_back], show_progress=True ) process_button_animation.click( fn=lambda *args: spaces.GPU()(gradio_pipeline.execute_video)(*args), inputs=[ image_input, video_input, flag_relative_input, flag_do_crop_input, flag_remap_input ], outputs=[output_video, output_video_concat], show_progress=True ) image_input.change( fn=gradio_pipeline.prepare_retargeting, inputs=image_input, outputs=[eye_retargeting_slider, lip_retargeting_slider, retargeting_input_image] ) demo.launch()