File size: 2,542 Bytes
8b6eec6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import os
import weaviate
from llama_index import download_loader
from llama_index.vector_stores import WeaviateVectorStore
from llama_index import VectorStoreIndex, StorageContext
from pathlib import Path
import argparse

def get_pdf_files(base_path, loader):
    """
    Get paths to all PDF files in a directory and its subdirectories.

    Parameters:
    - base_path (str): The path to the starting directory.

    Returns:
    - list of str: A list of paths to all PDF files found.
    """
    pdf_paths = []

    # Check if the base path exists and is a directory
    if not os.path.exists(base_path):
        raise FileNotFoundError(f"The specified base path does not exist: {base_path}")
    if not os.path.isdir(base_path):
        raise NotADirectoryError(f"The specified base_path is not a directory: {base_path}")

    # Loop through all directories and files starting from the base path
    for root, dirs, files in os.walk(base_path):
        for filename in files:
            # If a file has a .pdf extension, add its path to the list
            if filename.endswith('.pdf'):
                pdf_file = loader.load_data(file=Path(root, filename))
                pdf_paths.extend(pdf_file)

    return pdf_paths


def main(args):
    PDFReader = download_loader("PDFReader")
    loader = PDFReader()

    documents = get_pdf_files(args.pdf_dir, loader)

    client = weaviate.Client(
        url=os.environ["WEAVIATE_URL"],
        auth_client_secret=weaviate.AuthApiKey(api_key=os.environ["WEAVIATE_API_KEY"]),
        additional_headers={
            "X-OpenAI-Api-Key": os.environ["OPENAI_API_KEY"]
        }
    )

    # construct vector store
    vector_store = WeaviateVectorStore(weaviate_client=client, index_name=args.customer, text_key="content")

    # setting up the storage for the embeddings
    storage_context = StorageContext.from_defaults(vector_store=vector_store)

    # set up the index
    index = VectorStoreIndex(documents, storage_context=storage_context)
    query_engine = index.as_query_engine()
    response = query_engine.query(args.query)
    print(response)


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description='Process and query PDF files.')

    parser.add_argument('--customer', default='Ausy', help='Customer name')
    parser.add_argument('--pdf_dir', default='./data', help='Directory containing PDFs')
    parser.add_argument('--query', default='What is CX0 customer exprience office?', help='Query to execute')

    args = parser.parse_args()

    main(args)