Spaces:
Runtime error
Runtime error
vincentclaes
commited on
Commit
•
fd2ef9c
1
Parent(s):
0962672
working model
Browse files- README.md +13 -3
- app.py +56 -0
- mona-lisa-1.jpg +0 -0
- mona-lisa-2.jpg +0 -0
- mona-lisa-3.jpg +0 -0
- not-mona-lisa-1.jpg +0 -0
- not-mona-lisa-2.jpg +0 -0
- not-mona-lisa-3.jpg +0 -0
- requirements.txt +4 -0
README.md
CHANGED
@@ -1,12 +1,22 @@
|
|
1 |
---
|
2 |
title: Mona Lisa Detection
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.19.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
title: Mona Lisa Detection
|
3 |
+
emoji: 🖼
|
4 |
+
colorFrom: white
|
5 |
+
colorTo: white
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.19.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: mit
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
14 |
+
|
15 |
+
## Setup + Run
|
16 |
+
```bash
|
17 |
+
virtualenv .venv
|
18 |
+
source .venv/bin/activate
|
19 |
+
pip install -r requirements.txt
|
20 |
+
python app.py
|
21 |
+
|
22 |
+
```
|
app.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pathlib
|
2 |
+
import gradio as gr
|
3 |
+
from loguru import logger
|
4 |
+
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
|
5 |
+
|
6 |
+
logger.info("starting gradio app")
|
7 |
+
|
8 |
+
CURRENT_DIR = pathlib.Path(__file__).resolve().parent
|
9 |
+
APP_NAME = "Mona Lisa Detection"
|
10 |
+
|
11 |
+
logger.debug("loading processor and model.")
|
12 |
+
processor = AutoFeatureExtractor.from_pretrained(
|
13 |
+
"drift-ai/autotrain-mona-lisa-detection-38345101350"
|
14 |
+
)
|
15 |
+
model = AutoModelForImageClassification.from_pretrained(
|
16 |
+
"drift-ai/autotrain-mona-lisa-detection-38345101350"
|
17 |
+
)
|
18 |
+
logger.debug("loading processor and model succeeded.")
|
19 |
+
|
20 |
+
|
21 |
+
def process_image(image, model=model, processor=processor):
|
22 |
+
logger.info("Making a prediction ...")
|
23 |
+
inputs = processor(images=image, return_tensors="pt")
|
24 |
+
outputs = model(**inputs)
|
25 |
+
logits = outputs.logits
|
26 |
+
predicted_class_idx = logits.argmax(-1).item()
|
27 |
+
result = model.config.id2label[predicted_class_idx]
|
28 |
+
print("Predicted class:", result)
|
29 |
+
logger.info("Prediction finished.")
|
30 |
+
return result
|
31 |
+
|
32 |
+
|
33 |
+
examples = [
|
34 |
+
"mona-lisa-1.jpg",
|
35 |
+
"mona-lisa-2.jpg",
|
36 |
+
"mona-lisa-3.jpg",
|
37 |
+
"not-mona-lisa-1.jpg",
|
38 |
+
"not-mona-lisa-2.jpg",
|
39 |
+
"not-mona-lisa-3.jpg",
|
40 |
+
]
|
41 |
+
|
42 |
+
if __name__ == "__main__":
|
43 |
+
title = """
|
44 |
+
Mona Lisa Detection.
|
45 |
+
"""
|
46 |
+
app = gr.Interface(
|
47 |
+
fn=process_image,
|
48 |
+
inputs=[
|
49 |
+
gr.inputs.Image(type="pil", label="Image"),
|
50 |
+
],
|
51 |
+
outputs=gr.Label(label="Predictions:", show_label=True),
|
52 |
+
examples=examples,
|
53 |
+
examples_per_page=32,
|
54 |
+
title=title,
|
55 |
+
enable_queue=True,
|
56 |
+
).launch()
|
mona-lisa-1.jpg
ADDED
mona-lisa-2.jpg
ADDED
mona-lisa-3.jpg
ADDED
not-mona-lisa-1.jpg
ADDED
not-mona-lisa-2.jpg
ADDED
not-mona-lisa-3.jpg
ADDED
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
loguru
|
2 |
+
gradio
|
3 |
+
transformers
|
4 |
+
torch
|