from transformers import pipeline | |
import gradio as gr | |
# List of NER models | |
models = ["dslim/bert-base-NER", "dslim/bert-base-NER-uncased", "dslim/bert-large-NER"] | |
def ner(text, model_choice): | |
ner_pipeline = pipeline("ner", model=model_choice) | |
output = ner_pipeline(text) | |
return {"text": text, "entities": output} | |
examples = [ | |
"Does Chicago have any stores and does Joe live here?", | |
] | |
demo = gr.Interface( | |
fn=ner, | |
inputs=[ | |
gr.Textbox(placeholder="Enter sentence here..."), | |
gr.Dropdown(choices=models, label="Choose NER Model"), | |
], | |
outputs=gr.HighlightedText(), | |
examples=examples, | |
) | |
demo.launch() | |