import gradio as gr import anthropic import json import logging from tool_handler import process_tool_call, tools from config import SYSTEM_PROMPT, API_KEY, MODEL_NAME from datasets import load_dataset import pandas as pd from dotenv import load_dotenv # Load environment variables load_dotenv() # Configure logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) # Initialize Anthropoc client with API key client = anthropic.Client(api_key=API_KEY) def simple_chat(user_message, history): # Reconstruct the message history messages = [] for i, (user_msg, assistant_msg) in enumerate(history): messages.append({"role": "user", "content": user_msg}) messages.append({"role": "assistant", "content": assistant_msg}) messages.append({"role": "user", "content": user_message}) full_response = "" MAX_ITERATIONS = 5 iteration_count = 0 while iteration_count < MAX_ITERATIONS: try: logger.info(f"Sending messages to LLM API: {json.dumps(messages, indent=2)}") response = client.messages.create( model=MODEL_NAME, system=SYSTEM_PROMPT, max_tokens=4096, tools=tools, messages=messages, ) logger.info(f"LLM API response: {json.dumps(response.to_dict(), indent=2)}") assistant_message = response.content[0].text if isinstance(response.content, list) else response.content if response.stop_reason == "tool_use": tool_use = response.content[-1] tool_name = tool_use.name tool_input = tool_use.input tool_result = process_tool_call(tool_name, tool_input) # Add assistant message indicating tool use messages.append({"role": "assistant", "content": assistant_message}) # Add user message with tool result to maintain role alternation messages.append({ "role": "user", "content": json.dumps({ "type": "tool_result", "tool_use_id": tool_use.id, "content": tool_result, }) }) full_response += f"\nUsing tool: {tool_name}\n" iteration_count += 1 continue else: # Add the assistant's reply to the full response full_response += assistant_message messages.append({"role": "assistant", "content": assistant_message}) break except anthropic.BadRequestError as e: logger.error(f"BadRequestError: {str(e)}") full_response = f"Error: {str(e)}" break except Exception as e: logger.error(f"Unexpected error: {str(e)}") full_response = f"An unexpected error occurred: {str(e)}" break logger.info(f"Final messages: {json.dumps(messages, indent=2)}") if iteration_count == MAX_ITERATIONS: logger.warning("Maximum iterations reached in simple_chat") history.append((user_message, full_response)) return history, "", messages # Return messages as well def messages_to_dataframe(messages): data = [] for msg in messages: row = { 'role': msg['role'], 'content': msg['content'] if isinstance(msg['content'], str) else json.dumps(msg['content']), 'tool_use': None, 'tool_result': None } if msg['role'] == 'assistant' and isinstance(msg['content'], list): for item in msg['content']: if isinstance(item, dict) and 'type' in item: if item['type'] == 'tool_use': row['tool_use'] = json.dumps(item) elif item['type'] == 'tool_result': row['tool_result'] = json.dumps(item) data.append(row) return pd.DataFrame(data) def submit_message(message, history): history, _, messages = simple_chat(message, history) df = messages_to_dataframe(messages) print(df) # For console output return history, "", df def load_customers_dataset(): dataset = load_dataset("dwb2023/blackbird-customers", split="train") df = pd.DataFrame(dataset) return df def load_orders_dataset(): dataset = load_dataset("dwb2023/blackbird-orders", split="train") df = pd.DataFrame(dataset) return df example_inputs = [ "Can you confirm my username? My email is meilin@gmail.com.", "Can you send me a list of my recent orders? My phone number is 222-333-4444.", "I need to confirm my current user info and order status. My username is liamn.", "I'm checking on the status of an order, the order id is 74651.", "I need to cancel Order ID...", "I lost my phone and need to update my contact information. My user id is...", ] # Create Gradio App app = gr.Blocks(theme="sudeepshouche/minimalist") with app: with gr.Tab("Chatbot"): gr.Markdown("# BlackBird Customer Support Chat") gr.Markdown("## leveraging **Claude Sonnet 3.5** for microservice-based function calling") gr.Markdown("FastAPI Backend - runing on Docker: [blackbird-svc](https://huggingface.co/spaces/dwb2023/blackbird-svc)") gr.Markdown("Data Sources - HF Datasets: [blackbird-customers](https://huggingface.co/datasets/dwb2023/blackbird-customers) [blackbird-orders](https://huggingface.co/datasets/dwb2023/blackbird-orders)") with gr.Row(): with gr.Column(): msg = gr.Textbox(label="Your message") gr.Markdown("⬆️ checkout the *Customers* and *Orders* tabs above 👆 for sample email addresses, order ids, etc.") examples = gr.Examples( examples=example_inputs, inputs=msg ) submit = gr.Button("Submit", variant="primary") clear = gr.Button("Clear", variant="secondary") with gr.Column(): chatbot = gr.Chatbot() df_output = gr.Dataframe(label="Conversation Analysis") def handle_submit(message, history): return submit_message(message, history) submit_event = msg.submit(handle_submit, [msg, chatbot], [chatbot, msg, df_output]).then( lambda: "", None, msg ) submit.click(submit_message, [msg, chatbot], [chatbot, msg, df_output], show_progress="full").then( lambda: "", None, msg ) clear.click(lambda: None, None, chatbot, queue=False) with gr.Tab("Customers"): customers_df = gr.Dataframe(load_customers_dataset(), label="Customers Data") with gr.Tab("Orders"): orders_df = gr.Dataframe(load_orders_dataset(), label="Orders Data") if __name__ == "__main__": app.launch()