Spaces:
Paused
Paused
refactor app
Browse files- .gitignore +8 -0
- app.py +11 -60
- requirements.txt +3 -1
- utils.py +73 -0
.gitignore
CHANGED
@@ -1,2 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
1 |
.venv/
|
|
|
|
|
|
|
2 |
.python-version
|
|
|
1 |
+
# Ignore Python cache files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
|
5 |
+
# Ignore virtual environment
|
6 |
.venv/
|
7 |
+
|
8 |
+
# Ignore environment-specific files
|
9 |
+
.env
|
10 |
.python-version
|
app.py
CHANGED
@@ -1,65 +1,13 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
import torch, torchvision, einops
|
4 |
-
import spaces
|
5 |
-
import subprocess
|
6 |
-
from transformers import AutoModelForCausalLM, AutoModel, AutoModelForVision2Seq, PaliGemmaForConditionalGeneration, LlavaForConditionalGeneration, LlavaNextForConditionalGeneration
|
7 |
-
from huggingface_hub import login
|
8 |
|
9 |
# Install required package
|
10 |
-
|
11 |
-
"pip install flash-attn --no-build-isolation",
|
12 |
-
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
13 |
-
shell=True,
|
14 |
-
)
|
15 |
|
|
|
16 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
17 |
-
|
18 |
-
|
19 |
-
# Cache for storing loaded models and their summaries
|
20 |
-
model_cache = {}
|
21 |
-
|
22 |
-
# Function to get the model summary
|
23 |
-
@spaces.GPU
|
24 |
-
def get_model_summary(model_name):
|
25 |
-
if model_name in model_cache:
|
26 |
-
return model_cache[model_name], ""
|
27 |
-
|
28 |
-
try:
|
29 |
-
# Fetch the config.json file
|
30 |
-
config_url = f"https://huggingface.co/{model_name}/raw/main/config.json"
|
31 |
-
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
|
32 |
-
response = requests.get(config_url, headers=headers)
|
33 |
-
response.raise_for_status()
|
34 |
-
config = response.json()
|
35 |
-
architecture = config["architectures"][0]
|
36 |
-
|
37 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
38 |
-
|
39 |
-
# Select the correct model class based on the architecture
|
40 |
-
if architecture == "LlavaNextForConditionalGeneration":
|
41 |
-
from transformers import LlavaNextForConditionalGeneration
|
42 |
-
model = LlavaNextForConditionalGeneration.from_pretrained(model_name, trust_remote_code=True).to(device)
|
43 |
-
elif architecture == "LlavaForConditionalGeneration":
|
44 |
-
from transformers import LlavaForConditionalGeneration
|
45 |
-
model = LlavaForConditionalGeneration.from_pretrained(model_name, trust_remote_code=True).to(device)
|
46 |
-
elif architecture == "PaliGemmaForConditionalGeneration":
|
47 |
-
from transformers import PaliGemmaForConditionalGeneration
|
48 |
-
model = PaliGemmaForConditionalGeneration.from_pretrained(model_name, trust_remote_code=True).to(device)
|
49 |
-
elif architecture == "Idefics2ForConditionalGeneration":
|
50 |
-
from transformers import Idefics2ForConditionalGeneration
|
51 |
-
model = Idefics2ForConditionalGeneration.from_pretrained(model_name, trust_remote_code=True).to(device)
|
52 |
-
elif architecture == "MiniCPMV":
|
53 |
-
from transformers import MiniCPMV
|
54 |
-
model = MiniCPMV.from_pretrained(model_name, trust_remote_code=True).to(device)
|
55 |
-
else:
|
56 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True).to(device)
|
57 |
-
|
58 |
-
model_summary = str(model)
|
59 |
-
model_cache[model_name] = model_summary
|
60 |
-
return model_summary, ""
|
61 |
-
except Exception as e:
|
62 |
-
return "", str(e)
|
63 |
|
64 |
# Create the Gradio Blocks interface
|
65 |
with gr.Blocks() as demo:
|
@@ -69,13 +17,14 @@ with gr.Blocks() as demo:
|
|
69 |
gr.Markdown("### Vision Models")
|
70 |
vision_examples = gr.Examples(
|
71 |
examples=[
|
|
|
|
|
72 |
["llava-hf/llava-v1.6-mistral-7b-hf"],
|
73 |
["xtuner/llava-phi-3-mini-hf"],
|
74 |
["xtuner/llava-llama-3-8b-v1_1-transformers"],
|
75 |
["vikhyatk/moondream2"],
|
76 |
["openbmb/MiniCPM-Llama3-V-2_5"],
|
77 |
["microsoft/Phi-3-vision-128k-instruct"],
|
78 |
-
["google/paligemma-3b-mix-224"],
|
79 |
["HuggingFaceM4/idefics2-8b-chatty"],
|
80 |
["microsoft/llava-med-v1.5-mistral-7b"]
|
81 |
],
|
@@ -85,10 +34,12 @@ with gr.Blocks() as demo:
|
|
85 |
gr.Markdown("### Other Models")
|
86 |
other_examples = gr.Examples(
|
87 |
examples=[
|
|
|
|
|
|
|
88 |
["google/gemma-7b"],
|
89 |
["microsoft/Phi-3-mini-4k-instruct"],
|
90 |
-
["meta-llama/Meta-Llama-3-8B"]
|
91 |
-
["mistralai/Mistral-7B-Instruct-v0.3"]
|
92 |
],
|
93 |
inputs=textbox
|
94 |
)
|
|
|
1 |
+
import os
|
2 |
import gradio as gr
|
3 |
+
from utils import get_model_summary, install_flash_attn, authenticate_hf
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
# Install required package
|
6 |
+
install_flash_attn()
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
# Authenticate with Hugging Face
|
9 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
10 |
+
authenticate_hf(HF_TOKEN)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
# Create the Gradio Blocks interface
|
13 |
with gr.Blocks() as demo:
|
|
|
17 |
gr.Markdown("### Vision Models")
|
18 |
vision_examples = gr.Examples(
|
19 |
examples=[
|
20 |
+
["google/paligemma-3b-mix-224"],
|
21 |
+
["google/paligemma-3b-ft-refcoco-seg-224"],
|
22 |
["llava-hf/llava-v1.6-mistral-7b-hf"],
|
23 |
["xtuner/llava-phi-3-mini-hf"],
|
24 |
["xtuner/llava-llama-3-8b-v1_1-transformers"],
|
25 |
["vikhyatk/moondream2"],
|
26 |
["openbmb/MiniCPM-Llama3-V-2_5"],
|
27 |
["microsoft/Phi-3-vision-128k-instruct"],
|
|
|
28 |
["HuggingFaceM4/idefics2-8b-chatty"],
|
29 |
["microsoft/llava-med-v1.5-mistral-7b"]
|
30 |
],
|
|
|
34 |
gr.Markdown("### Other Models")
|
35 |
other_examples = gr.Examples(
|
36 |
examples=[
|
37 |
+
["dwb2023/mistral-7b-instruct-quantized"],
|
38 |
+
["mistralai/Mistral-7B-Instruct-v0.2"],
|
39 |
+
["mistralai/Mistral-7B-Instruct-v0.3"],
|
40 |
["google/gemma-7b"],
|
41 |
["microsoft/Phi-3-mini-4k-instruct"],
|
42 |
+
["meta-llama/Meta-Llama-3-8B"]
|
|
|
43 |
],
|
44 |
inputs=textbox
|
45 |
)
|
requirements.txt
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
git+https://github.com/huggingface/transformers.git
|
2 |
spaces
|
3 |
torchvision
|
4 |
-
einops
|
|
|
|
|
|
1 |
git+https://github.com/huggingface/transformers.git
|
2 |
spaces
|
3 |
torchvision
|
4 |
+
einops
|
5 |
+
accelerate
|
6 |
+
bitsandbytes
|
utils.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import subprocess
|
2 |
+
import os, requests
|
3 |
+
import torch, torchvision
|
4 |
+
from huggingface_hub import login
|
5 |
+
from transformers import BitsAndBytesConfig, AutoModelForCausalLM, LlavaNextForConditionalGeneration, LlavaForConditionalGeneration, PaliGemmaForConditionalGeneration, Idefics2ForConditionalGeneration
|
6 |
+
|
7 |
+
# Install required package
|
8 |
+
def install_flash_attn():
|
9 |
+
subprocess.run(
|
10 |
+
"pip install flash-attn --no-build-isolation",
|
11 |
+
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
12 |
+
shell=True,
|
13 |
+
)
|
14 |
+
|
15 |
+
# Authenticate with Hugging Face
|
16 |
+
def authenticate_hf(token):
|
17 |
+
login(token=token, add_to_git_credential=True)
|
18 |
+
|
19 |
+
# Function to get the model summary
|
20 |
+
model_cache = {}
|
21 |
+
|
22 |
+
def get_model_summary(model_name):
|
23 |
+
if model_name in model_cache:
|
24 |
+
return model_cache[model_name], ""
|
25 |
+
|
26 |
+
try:
|
27 |
+
# Fetch the config.json file
|
28 |
+
config_url = f"https://huggingface.co/{model_name}/raw/main/config.json"
|
29 |
+
headers = {"Authorization": f"Bearer {os.getenv('HF_TOKEN')}"}
|
30 |
+
response = requests.get(config_url, headers=headers)
|
31 |
+
response.raise_for_status()
|
32 |
+
config = response.json()
|
33 |
+
architecture = config["architectures"][0]
|
34 |
+
|
35 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
36 |
+
|
37 |
+
# Check if the model is quantized
|
38 |
+
is_quantized = "quantized" in model_name.lower()
|
39 |
+
|
40 |
+
# Set up BitsAndBytesConfig if the model is quantized
|
41 |
+
bnb_config = BitsAndBytesConfig(load_in_4bit=True) if is_quantized else None
|
42 |
+
|
43 |
+
# Load the model based on its architecture and quantization status
|
44 |
+
if architecture == "LlavaNextForConditionalGeneration":
|
45 |
+
model = LlavaNextForConditionalGeneration.from_pretrained(
|
46 |
+
model_name, config=bnb_config, trust_remote_code=True
|
47 |
+
)
|
48 |
+
elif architecture == "LlavaForConditionalGeneration":
|
49 |
+
model = LlavaForConditionalGeneration.from_pretrained(
|
50 |
+
model_name, config=bnb_config, trust_remote_code=True
|
51 |
+
)
|
52 |
+
elif architecture == "PaliGemmaForConditionalGeneration":
|
53 |
+
model = PaliGemmaForConditionalGeneration.from_pretrained(
|
54 |
+
model_name, config=bnb_config, trust_remote_code=True
|
55 |
+
)
|
56 |
+
elif architecture == "Idefics2ForConditionalGeneration":
|
57 |
+
model = Idefics2ForConditionalGeneration.from_pretrained(
|
58 |
+
model_name, config=bnb_config, trust_remote_code=True
|
59 |
+
)
|
60 |
+
else:
|
61 |
+
model = AutoModelForCausalLM.from_pretrained(
|
62 |
+
model_name, config=bnb_config, trust_remote_code=True
|
63 |
+
)
|
64 |
+
|
65 |
+
# Move to device only if the model is not quantized
|
66 |
+
if not is_quantized:
|
67 |
+
model = model.to(device)
|
68 |
+
|
69 |
+
model_summary = str(model)
|
70 |
+
model_cache[model_name] = model_summary
|
71 |
+
return model_summary, ""
|
72 |
+
except Exception as e:
|
73 |
+
return "", str(e)
|