Spaces:
Running
Running
add tabs
Browse files- .python-version +1 -0
- __pycache__/config.cpython-310.pyc +0 -0
- app.py +185 -27
- config.py +8 -0
- examples/cart1.jpg +0 -0
- examples/cart1.json +0 -7
- examples/cart2.jpg +0 -0
- examples/cart2.json +0 -7
- examples/cart3.jpg +0 -0
- examples/cart3.json +0 -7
- examples/cnmc1.bmp +0 -0
- examples/cnmc1.json +0 -7
- examples/cnmc2.bmp +0 -0
- examples/cnmc2.json +0 -7
- examples/cnmc3.bmp +0 -0
- examples/cnmc3.json +0 -7
- examples/cnmc4.bmp +0 -0
- examples/cnmc4.json +0 -7
- examples/cnmc5.bmp +0 -0
- examples/cnmc5.json +0 -7
- examples/cnmc6.bmp +0 -0
- examples/cnmc6.json +0 -7
- examples/cnmc7.bmp +0 -0
- examples/cnmc7.json +0 -7
- examples/cnmc8.bmp +0 -0
- examples/cnmc8.json +0 -7
- examples/cnmc9.bmp +0 -0
- examples/cnmc9.json +0 -7
- examples/tumor1.json +0 -7
- examples/tumor10.json +0 -7
- examples/tumor2.json +0 -7
- examples/tumor3.json +0 -7
- examples/tumor4.json +0 -7
- examples/tumor5.json +0 -7
- examples/tumor6.json +0 -7
- examples/tumor7.json +0 -7
- examples/tumor8.json +0 -7
- examples/tumor9.json +0 -7
- requirements.txt +3 -2
.python-version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
3.10
|
__pycache__/config.cpython-310.pyc
ADDED
Binary file (282 Bytes). View file
|
|
app.py
CHANGED
@@ -1,9 +1,13 @@
|
|
1 |
import os
|
2 |
import logging
|
3 |
import sys
|
|
|
|
|
|
|
|
|
4 |
|
5 |
# Function to get logging level from environment variable
|
6 |
-
def get_logging_level(default_level=logging.
|
7 |
log_level_str = os.getenv('VISION_AGENT_LOG_LEVEL', '').upper()
|
8 |
if log_level_str == 'DEBUG':
|
9 |
return logging.DEBUG
|
@@ -18,24 +22,9 @@ def get_logging_level(default_level=logging.DEBUG): # Default to DEBUG for deta
|
|
18 |
else:
|
19 |
return default_level
|
20 |
|
21 |
-
#
|
22 |
-
|
23 |
-
logging.
|
24 |
-
_LOGGER = logging.getLogger(__name__)
|
25 |
-
|
26 |
-
# Explicitly set logging level for the vision-agent library
|
27 |
-
vision_agent_logger = logging.getLogger('vision_agent')
|
28 |
-
vision_agent_logger.setLevel(logging_level)
|
29 |
-
|
30 |
-
# Set logging level for Hugging Face libraries
|
31 |
-
hf_hub_logger = logging.getLogger('huggingface_hub')
|
32 |
-
hf_hub_logger.setLevel(logging_level)
|
33 |
-
|
34 |
-
datasets_logger = logging.getLogger('datasets')
|
35 |
-
datasets_logger.setLevel(logging_level)
|
36 |
-
|
37 |
-
# Print the logging level to verify it's set correctly
|
38 |
-
print(f"Logging level set to: {logging.getLevelName(logging_level)}")
|
39 |
|
40 |
from huggingface_hub import login
|
41 |
import time
|
@@ -44,7 +33,7 @@ from typing import *
|
|
44 |
from pillow_heif import register_heif_opener
|
45 |
register_heif_opener()
|
46 |
import vision_agent as va
|
47 |
-
from vision_agent.tools import register_tool, load_image, owl_v2, overlay_bounding_boxes, save_image
|
48 |
|
49 |
# Perform login using the token
|
50 |
hf_token = os.getenv("HF_TOKEN")
|
@@ -53,7 +42,8 @@ login(token=hf_token, add_to_git_credential=True)
|
|
53 |
import numpy as np
|
54 |
from PIL import Image
|
55 |
|
56 |
-
|
|
|
57 |
"""
|
58 |
Detects a brain tumor in the given image and returns the annotated image.
|
59 |
|
@@ -66,18 +56,66 @@ def detect_brain_tumor(image, seg_input, debug: bool = True):
|
|
66 |
tuple: (numpy array of image, list of (label, (x1, y1, x2, y2)) tuples)
|
67 |
"""
|
68 |
if debug:
|
69 |
-
|
70 |
|
71 |
# Step 2: Detect brain tumor using owl_v2
|
72 |
prompt = "detect brain tumor"
|
73 |
detections = owl_v2(prompt, image)
|
74 |
if debug:
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
# Step 3: Overlay bounding boxes on the image
|
78 |
image_with_bboxes = overlay_bounding_boxes(image, detections)
|
79 |
if debug:
|
80 |
-
|
81 |
|
82 |
# Prepare annotations for AnnotatedImage output
|
83 |
annotations = []
|
@@ -92,7 +130,55 @@ def detect_brain_tumor(image, seg_input, debug: bool = True):
|
|
92 |
annotations.append(((x1, y1, x2, y2), f"{label} {score:.2f}"))
|
93 |
|
94 |
if debug:
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
# Convert image to numpy array if it's not already
|
98 |
if isinstance(image_with_bboxes, Image.Image):
|
@@ -104,7 +190,7 @@ INTRO_TEXT="# 🔬🧠 OmniScience -- Agentic Imaging Analysis 🤖🧫"
|
|
104 |
|
105 |
with gr.Blocks(css="style.css") as demo:
|
106 |
gr.Markdown(INTRO_TEXT)
|
107 |
-
with gr.Tab("
|
108 |
with gr.Row():
|
109 |
with gr.Column():
|
110 |
image = gr.Image(type="numpy")
|
@@ -135,10 +221,82 @@ with gr.Blocks(css="style.css") as demo:
|
|
135 |
annotated_image
|
136 |
]
|
137 |
seg_btn.click(
|
138 |
-
fn=
|
139 |
inputs=seg_inputs,
|
140 |
outputs=seg_outputs,
|
141 |
)
|
142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
if __name__ == "__main__":
|
144 |
demo.queue(max_size=10).launch(debug=True)
|
|
|
1 |
import os
|
2 |
import logging
|
3 |
import sys
|
4 |
+
from config import WEAVE_PROJECT, WANDB_API_KEY
|
5 |
+
import weave
|
6 |
+
|
7 |
+
weave.init(WEAVE_PROJECT)
|
8 |
|
9 |
# Function to get logging level from environment variable
|
10 |
+
def get_logging_level(default_level=logging.INFO): # Default to DEBUG for detailed logs
|
11 |
log_level_str = os.getenv('VISION_AGENT_LOG_LEVEL', '').upper()
|
12 |
if log_level_str == 'DEBUG':
|
13 |
return logging.DEBUG
|
|
|
22 |
else:
|
23 |
return default_level
|
24 |
|
25 |
+
# Initialize logger
|
26 |
+
logging.basicConfig(level=get_logging_level(), format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
27 |
+
logger = logging.getLogger('vision_agent')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
from huggingface_hub import login
|
30 |
import time
|
|
|
33 |
from pillow_heif import register_heif_opener
|
34 |
register_heif_opener()
|
35 |
import vision_agent as va
|
36 |
+
from vision_agent.tools import register_tool, load_image, owl_v2, grounding_dino, florencev2_object_detection, overlay_bounding_boxes, save_image
|
37 |
|
38 |
# Perform login using the token
|
39 |
hf_token = os.getenv("HF_TOKEN")
|
|
|
42 |
import numpy as np
|
43 |
from PIL import Image
|
44 |
|
45 |
+
@weave.op()
|
46 |
+
def detect_brain_tumor_owlv2(image, seg_input, debug: bool = True):
|
47 |
"""
|
48 |
Detects a brain tumor in the given image and returns the annotated image.
|
49 |
|
|
|
56 |
tuple: (numpy array of image, list of (label, (x1, y1, x2, y2)) tuples)
|
57 |
"""
|
58 |
if debug:
|
59 |
+
logger.debug(f"Image received, shape: {image.shape}")
|
60 |
|
61 |
# Step 2: Detect brain tumor using owl_v2
|
62 |
prompt = "detect brain tumor"
|
63 |
detections = owl_v2(prompt, image)
|
64 |
if debug:
|
65 |
+
logger.debug(f"Raw detections: {detections}")
|
66 |
+
|
67 |
+
# Step 3: Overlay bounding boxes on the image
|
68 |
+
image_with_bboxes = overlay_bounding_boxes(image, detections)
|
69 |
+
if debug:
|
70 |
+
logger.debug("Bounding boxes overlaid on the image")
|
71 |
+
|
72 |
+
# Prepare annotations for AnnotatedImage output
|
73 |
+
annotations = []
|
74 |
+
for detection in detections:
|
75 |
+
label = detection['label']
|
76 |
+
score = detection['score']
|
77 |
+
bbox = detection['bbox']
|
78 |
+
x1, y1, x2, y2 = bbox
|
79 |
+
# Convert normalized coordinates to pixel coordinates
|
80 |
+
height, width = image.shape[:2]
|
81 |
+
x1, y1, x2, y2 = int(x1*width), int(y1*height), int(x2*width), int(y2*height)
|
82 |
+
annotations.append(((x1, y1, x2, y2), f"{label} {score:.2f}"))
|
83 |
+
|
84 |
+
if debug:
|
85 |
+
logger.debug(f"Annotations: {annotations}")
|
86 |
+
|
87 |
+
# Convert image to numpy array if it's not already
|
88 |
+
if isinstance(image_with_bboxes, Image.Image):
|
89 |
+
image_with_bboxes = np.array(image_with_bboxes)
|
90 |
+
|
91 |
+
return (image_with_bboxes, annotations)
|
92 |
+
|
93 |
+
@weave.op()
|
94 |
+
def detect_brain_tumor_dino(image, seg_input, debug: bool = True):
|
95 |
+
"""
|
96 |
+
Detects a brain tumor in the given image and returns the annotated image.
|
97 |
+
|
98 |
+
Parameters:
|
99 |
+
image: The input image (as numpy array provided by Gradio).
|
100 |
+
seg_input: The segmentation input (not used in this function, but required for Gradio).
|
101 |
+
debug (bool): Flag to enable logging for debugging purposes.
|
102 |
+
|
103 |
+
Returns:
|
104 |
+
tuple: (numpy array of image, list of (label, (x1, y1, x2, y2)) tuples)
|
105 |
+
"""
|
106 |
+
if debug:
|
107 |
+
logger.debug(f"Image received, shape: {image.shape}")
|
108 |
+
|
109 |
+
# Step 2: Detect brain tumor using grounding_dino
|
110 |
+
prompt = "detect brain tumor"
|
111 |
+
detections = grounding_dino(prompt, image)
|
112 |
+
if debug:
|
113 |
+
logger.debug(f"Raw detections: {detections}")
|
114 |
|
115 |
# Step 3: Overlay bounding boxes on the image
|
116 |
image_with_bboxes = overlay_bounding_boxes(image, detections)
|
117 |
if debug:
|
118 |
+
logger.debug("Bounding boxes overlaid on the image")
|
119 |
|
120 |
# Prepare annotations for AnnotatedImage output
|
121 |
annotations = []
|
|
|
130 |
annotations.append(((x1, y1, x2, y2), f"{label} {score:.2f}"))
|
131 |
|
132 |
if debug:
|
133 |
+
logger.debug(f"Annotations: {annotations}")
|
134 |
+
|
135 |
+
# Convert image to numpy array if it's not already
|
136 |
+
if isinstance(image_with_bboxes, Image.Image):
|
137 |
+
image_with_bboxes = np.array(image_with_bboxes)
|
138 |
+
|
139 |
+
return (image_with_bboxes, annotations)
|
140 |
+
|
141 |
+
@weave.op()
|
142 |
+
def detect_brain_tumor_florence2(image, seg_input, debug: bool = True):
|
143 |
+
"""
|
144 |
+
Detects a brain tumor in the given image and returns the annotated image.
|
145 |
+
|
146 |
+
Parameters:
|
147 |
+
image: The input image (as numpy array provided by Gradio).
|
148 |
+
seg_input: The segmentation input (not used in this function, but required for Gradio).
|
149 |
+
debug (bool): Flag to enable logging for debugging purposes.
|
150 |
+
|
151 |
+
Returns:
|
152 |
+
tuple: (numpy array of image, list of (label, (x1, y1, x2, y2)) tuples)
|
153 |
+
"""
|
154 |
+
if debug:
|
155 |
+
logger.debug(f"Image received, shape: {image.shape}")
|
156 |
+
|
157 |
+
# Step 2: Detect brain tumor using florencev2 - NO PROMPT
|
158 |
+
prompt = "detect brain tumor"
|
159 |
+
detections = florencev2_object_detection(prompt)
|
160 |
+
if debug:
|
161 |
+
logger.debug(f"Raw detections: {detections}")
|
162 |
+
|
163 |
+
# Step 3: Overlay bounding boxes on the image
|
164 |
+
image_with_bboxes = overlay_bounding_boxes(image, detections)
|
165 |
+
if debug:
|
166 |
+
logger.debug("Bounding boxes overlaid on the image")
|
167 |
+
|
168 |
+
# Prepare annotations for AnnotatedImage output
|
169 |
+
annotations = []
|
170 |
+
for detection in detections:
|
171 |
+
label = detection['label']
|
172 |
+
score = detection['score']
|
173 |
+
bbox = detection['bbox']
|
174 |
+
x1, y1, x2, y2 = bbox
|
175 |
+
# Convert normalized coordinates to pixel coordinates
|
176 |
+
height, width = image.shape[:2]
|
177 |
+
x1, y1, x2, y2 = int(x1*width), int(y1*height), int(x2*width), int(y2*height)
|
178 |
+
annotations.append(((x1, y1, x2, y2), f"{label} {score:.2f}"))
|
179 |
+
|
180 |
+
if debug:
|
181 |
+
logger.debug(f"Annotations: {annotations}")
|
182 |
|
183 |
# Convert image to numpy array if it's not already
|
184 |
if isinstance(image_with_bboxes, Image.Image):
|
|
|
190 |
|
191 |
with gr.Blocks(css="style.css") as demo:
|
192 |
gr.Markdown(INTRO_TEXT)
|
193 |
+
with gr.Tab("Object Detection - Owl V2"):
|
194 |
with gr.Row():
|
195 |
with gr.Column():
|
196 |
image = gr.Image(type="numpy")
|
|
|
221 |
annotated_image
|
222 |
]
|
223 |
seg_btn.click(
|
224 |
+
fn=detect_brain_tumor_owlv2,
|
225 |
inputs=seg_inputs,
|
226 |
outputs=seg_outputs,
|
227 |
)
|
228 |
|
229 |
+
with gr.Tab("Object Detection - DINO"):
|
230 |
+
with gr.Row():
|
231 |
+
with gr.Column():
|
232 |
+
image = gr.Image(type="numpy")
|
233 |
+
seg_input = gr.Text(label="Entities to Segment/Detect", value="detect brain tumor")
|
234 |
+
|
235 |
+
with gr.Column():
|
236 |
+
annotated_image = gr.AnnotatedImage(label="Output")
|
237 |
+
|
238 |
+
seg_btn = gr.Button("Submit")
|
239 |
+
examples = [["./examples/194_jpg.rf.3e3dd592d034bb5ee27a978553819f42.jpg", "detect brain tumor"],
|
240 |
+
["./examples/239_jpg.rf.3dcc0799277fb78a2ab21db7761ccaeb.jpg", "detect brain tumor"],
|
241 |
+
["./examples/1385_jpg.rf.3c67cb92e2922dba0e6dba86f69df40b.jpg", "detect brain tumor"],
|
242 |
+
["./examples/1491_jpg.rf.3c658e83538de0fa5a3f4e13d7d85f12.jpg", "detect brain tumor"],
|
243 |
+
["./examples/1550_jpg.rf.3d067be9580ec32dbee5a89c675d8459.jpg", "detect brain tumor"],
|
244 |
+
["./examples/2256_jpg.rf.3afd7903eaf3f3c5aa8da4bbb928bc19.jpg", "detect brain tumor"],
|
245 |
+
["./examples/2871_jpg.rf.3b6eadfbb369abc2b3bcb52b406b74f2.jpg", "detect brain tumor"],
|
246 |
+
["./examples/2921_jpg.rf.3b952f91f27a6248091e7601c22323ad.jpg", "detect brain tumor"],
|
247 |
+
]
|
248 |
+
gr.Examples(
|
249 |
+
examples=examples,
|
250 |
+
inputs=[image, seg_input],
|
251 |
+
)
|
252 |
+
seg_inputs = [
|
253 |
+
image,
|
254 |
+
seg_input
|
255 |
+
]
|
256 |
+
seg_outputs = [
|
257 |
+
annotated_image
|
258 |
+
]
|
259 |
+
seg_btn.click(
|
260 |
+
fn=detect_brain_tumor_dino,
|
261 |
+
inputs=seg_inputs,
|
262 |
+
outputs=seg_outputs,
|
263 |
+
)
|
264 |
+
|
265 |
+
with gr.Tab("Object Detection - Florence2"):
|
266 |
+
with gr.Row():
|
267 |
+
with gr.Column():
|
268 |
+
image = gr.Image(type="numpy")
|
269 |
+
seg_input = gr.Text(label="Entities to Segment/Detect - PROMPT IS NOT PASSED TO FLORENCE2", value="detect brain tumor")
|
270 |
+
|
271 |
+
with gr.Column():
|
272 |
+
annotated_image = gr.AnnotatedImage(label="Output")
|
273 |
+
|
274 |
+
seg_btn = gr.Button("Submit")
|
275 |
+
examples = [["./examples/194_jpg.rf.3e3dd592d034bb5ee27a978553819f42.jpg", "detect brain tumor"],
|
276 |
+
["./examples/239_jpg.rf.3dcc0799277fb78a2ab21db7761ccaeb.jpg", "detect brain tumor"],
|
277 |
+
["./examples/1385_jpg.rf.3c67cb92e2922dba0e6dba86f69df40b.jpg", "detect brain tumor"],
|
278 |
+
["./examples/1491_jpg.rf.3c658e83538de0fa5a3f4e13d7d85f12.jpg", "detect brain tumor"],
|
279 |
+
["./examples/1550_jpg.rf.3d067be9580ec32dbee5a89c675d8459.jpg", "detect brain tumor"],
|
280 |
+
["./examples/2256_jpg.rf.3afd7903eaf3f3c5aa8da4bbb928bc19.jpg", "detect brain tumor"],
|
281 |
+
["./examples/2871_jpg.rf.3b6eadfbb369abc2b3bcb52b406b74f2.jpg", "detect brain tumor"],
|
282 |
+
["./examples/2921_jpg.rf.3b952f91f27a6248091e7601c22323ad.jpg", "detect brain tumor"],
|
283 |
+
]
|
284 |
+
gr.Examples(
|
285 |
+
examples=examples,
|
286 |
+
inputs=[image, seg_input],
|
287 |
+
)
|
288 |
+
seg_inputs = [
|
289 |
+
image,
|
290 |
+
seg_input
|
291 |
+
]
|
292 |
+
seg_outputs = [
|
293 |
+
annotated_image
|
294 |
+
]
|
295 |
+
seg_btn.click(
|
296 |
+
fn=detect_brain_tumor_dino,
|
297 |
+
inputs=seg_inputs,
|
298 |
+
outputs=seg_outputs,
|
299 |
+
)
|
300 |
+
|
301 |
if __name__ == "__main__":
|
302 |
demo.queue(max_size=10).launch(debug=True)
|
config.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# config.py
|
2 |
+
import os
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
|
5 |
+
load_dotenv()
|
6 |
+
|
7 |
+
WANDB_API_KEY = os.getenv('WANDB_API_KEY')
|
8 |
+
WEAVE_PROJECT = "omniscience-app"
|
examples/cart1.jpg
DELETED
Binary file (99.9 kB)
|
|
examples/cart1.json
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"name": "cart1",
|
3 |
-
"comment": "Computer illustration of CAR-T therapy",
|
4 |
-
"model": "paligemma-3b-mix-224",
|
5 |
-
"prompt": "segment cells",
|
6 |
-
"license": "https://www.cancertherapyadvisor.com/wp-content/uploads/sites/12/2019/09/CAR-T_G_864309570-860x574.jpg"
|
7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/cart2.jpg
DELETED
Binary file (179 kB)
|
|
examples/cart2.json
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"name": "cart2",
|
3 |
-
"comment": "Cancerous T-Cells Using Car-T Therapy",
|
4 |
-
"model": "paligemma-3b-mix-224",
|
5 |
-
"prompt": "segment cells",
|
6 |
-
"license": "https://www.coherentmarketinsights.com/blogimg/uploads/2017/02/Cancerous-T-Cells-Using-CAR-T-Therapy.jpg"
|
7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/cart3.jpg
DELETED
Binary file (87.2 kB)
|
|
examples/cart3.json
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"name": "cart3",
|
3 |
-
"comment": "CAR T cell therapy",
|
4 |
-
"model": "paligemma-3b-mix-224",
|
5 |
-
"prompt": "segment cells",
|
6 |
-
"license": "https://delveinsight-blog.s3.amazonaws.com/blog/wp-content/uploads/2018/12/09022609/adusumillia-car_0_3x2.jpg"
|
7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/cnmc1.bmp
DELETED
Binary file (609 kB)
|
|
examples/cnmc1.json
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"name": "cnmc1",
|
3 |
-
"comment": "cnmc-leukemia-2019",
|
4 |
-
"model": "paligemma-cnmc-ft",
|
5 |
-
"prompt": "Are these cells healthy or cancerous?",
|
6 |
-
"license": "https://www.cancerimagingarchive.net/collection/c-nmc-2019/"
|
7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/cnmc2.bmp
DELETED
Binary file (609 kB)
|
|
examples/cnmc2.json
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"name": "cnmc2",
|
3 |
-
"comment": "cnmc-leukemia-2019",
|
4 |
-
"model": "paligemma-cnmc-ft",
|
5 |
-
"prompt": "Are these cells healthy or cancerous?",
|
6 |
-
"license": "https://www.cancerimagingarchive.net/collection/c-nmc-2019/"
|
7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/cnmc3.bmp
DELETED
Binary file (609 kB)
|
|
examples/cnmc3.json
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"name": "cnmc3",
|
3 |
-
"comment": "cnmc-leukemia-2019",
|
4 |
-
"model": "paligemma-cnmc-ft",
|
5 |
-
"prompt": "Are these cells healthy or cancerous?",
|
6 |
-
"license": "https://www.cancerimagingarchive.net/collection/c-nmc-2019/"
|
7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/cnmc4.bmp
DELETED
Binary file (609 kB)
|
|
examples/cnmc4.json
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"name": "cnmc4",
|
3 |
-
"comment": "cnmc-leukemia-2019",
|
4 |
-
"model": "paligemma-cnmc-ft",
|
5 |
-
"prompt": "Are these cells healthy or cancerous?",
|
6 |
-
"license": "https://www.cancerimagingarchive.net/collection/c-nmc-2019/"
|
7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/cnmc5.bmp
DELETED
Binary file (609 kB)
|
|
examples/cnmc5.json
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"name": "cnmc5",
|
3 |
-
"comment": "cnmc-leukemia-2019",
|
4 |
-
"model": "paligemma-cnmc-ft",
|
5 |
-
"prompt": "Are these cells healthy or cancerous?",
|
6 |
-
"license": "https://www.cancerimagingarchive.net/collection/c-nmc-2019/"
|
7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/cnmc6.bmp
DELETED
Binary file (609 kB)
|
|
examples/cnmc6.json
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"name": "cnmc6",
|
3 |
-
"comment": "cnmc-leukemia-2019",
|
4 |
-
"model": "paligemma-cnmc-ft",
|
5 |
-
"prompt": "Are these cells healthy or cancerous?",
|
6 |
-
"license": "https://www.cancerimagingarchive.net/collection/c-nmc-2019/"
|
7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/cnmc7.bmp
DELETED
Binary file (609 kB)
|
|
examples/cnmc7.json
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"name": "cnmc7",
|
3 |
-
"comment": "cnmc-leukemia-2019",
|
4 |
-
"model": "paligemma-cnmc-ft",
|
5 |
-
"prompt": "Are these cells healthy or cancerous?",
|
6 |
-
"license": "https://www.cancerimagingarchive.net/collection/c-nmc-2019/"
|
7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/cnmc8.bmp
DELETED
Binary file (609 kB)
|
|
examples/cnmc8.json
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"name": "cnmc8",
|
3 |
-
"comment": "cnmc-leukemia-2019",
|
4 |
-
"model": "paligemma-cnmc-ft",
|
5 |
-
"prompt": "Are these cells healthy or cancerous?",
|
6 |
-
"license": "https://www.cancerimagingarchive.net/collection/c-nmc-2019/"
|
7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/cnmc9.bmp
DELETED
Binary file (609 kB)
|
|
examples/cnmc9.json
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"name": "cnmc9",
|
3 |
-
"comment": "cnmc-leukemia-2019",
|
4 |
-
"model": "paligemma-cnmc-ft",
|
5 |
-
"prompt": "Are these cells healthy or cancerous?",
|
6 |
-
"license": "https://www.cancerimagingarchive.net/collection/c-nmc-2019/"
|
7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/tumor1.json
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"name": "tumor1",
|
3 |
-
"comment": "",
|
4 |
-
"model": "",
|
5 |
-
"prompt": "detect cell tumor",
|
6 |
-
"license": ""
|
7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/tumor10.json
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"name": "tumor10",
|
3 |
-
"comment": "",
|
4 |
-
"model": "",
|
5 |
-
"prompt": "detect cell tumor",
|
6 |
-
"license": ""
|
7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/tumor2.json
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"name": "tumor2",
|
3 |
-
"comment": "",
|
4 |
-
"model": "",
|
5 |
-
"prompt": "detect cell tumor",
|
6 |
-
"license": ""
|
7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/tumor3.json
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"name": "tumor3",
|
3 |
-
"comment": "",
|
4 |
-
"model": "",
|
5 |
-
"prompt": "detect cell tumor",
|
6 |
-
"license": ""
|
7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/tumor4.json
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"name": "tumor4",
|
3 |
-
"comment": "",
|
4 |
-
"model": "",
|
5 |
-
"prompt": "detect cell tumor",
|
6 |
-
"license": ""
|
7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/tumor5.json
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"name": "tumor5",
|
3 |
-
"comment": "",
|
4 |
-
"model": "",
|
5 |
-
"prompt": "detect cell tumor",
|
6 |
-
"license": ""
|
7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/tumor6.json
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"name": "tumor6",
|
3 |
-
"comment": "",
|
4 |
-
"model": "",
|
5 |
-
"prompt": "detect cell tumor",
|
6 |
-
"license": ""
|
7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/tumor7.json
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"name": "tumor7",
|
3 |
-
"comment": "",
|
4 |
-
"model": "",
|
5 |
-
"prompt": "detect cell tumor",
|
6 |
-
"license": ""
|
7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/tumor8.json
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"name": "tumor8",
|
3 |
-
"comment": "",
|
4 |
-
"model": "",
|
5 |
-
"prompt": "detect cell tumor",
|
6 |
-
"license": ""
|
7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/tumor9.json
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"name": "tumor9",
|
3 |
-
"comment": "",
|
4 |
-
"model": "",
|
5 |
-
"prompt": "detect cell tumor",
|
6 |
-
"license": ""
|
7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
git+https://github.com/donbr/vision-agent.git
|
2 |
git+https://github.com/donbr/vision-agent-tools.git
|
3 |
-
spaces
|
4 |
pillow
|
5 |
pillow-heif
|
6 |
-
weave
|
|
|
|
|
|
1 |
git+https://github.com/donbr/vision-agent.git
|
2 |
git+https://github.com/donbr/vision-agent-tools.git
|
|
|
3 |
pillow
|
4 |
pillow-heif
|
5 |
+
weave
|
6 |
+
huggingface-hub
|
7 |
+
gradio
|