import os import logging import sys from config import WEAVE_PROJECT, WANDB_API_KEY import weave from model_utils import get_model_summary, install_flash_attn # Install required package install_flash_attn() weave.init(WEAVE_PROJECT) # Function to get logging level from environment variable def get_logging_level(default_level=logging.INFO): # Default to DEBUG for detailed logs log_level_str = os.getenv('VISION_AGENT_LOG_LEVEL', '').upper() if log_level_str == 'DEBUG': return logging.DEBUG elif log_level_str == 'INFO': return logging.INFO elif log_level_str == 'WARNING': return logging.WARNING elif log_level_str == 'ERROR': return logging.ERROR elif log_level_str == 'CRITICAL': return logging.CRITICAL else: return default_level # Initialize logger logging.basicConfig(level=get_logging_level(), format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger('vision_agent') from huggingface_hub import login import time import gradio as gr from typing import * from pillow_heif import register_heif_opener register_heif_opener() import vision_agent as va from vision_agent.tools import register_tool, load_image, owl_v2, grounding_dino, florencev2_object_detection, overlay_bounding_boxes, save_image # Perform login using the token hf_token = os.getenv("HF_TOKEN") login(token=hf_token, add_to_git_credential=True) import numpy as np from PIL import Image @weave.op() def detect_object_owlv2(image, seg_input, debug: bool = True): """ Detects a brain tumor in the given image and returns the annotated image. Parameters: image: The input image (as numpy array provided by Gradio). seg_input: The segmentation input (not used in this function, but required for Gradio). debug (bool): Flag to enable logging for debugging purposes. Returns: tuple: (numpy array of image, list of (label, (x1, y1, x2, y2)) tuples) """ # Step 2: Detect brain tumor using owl_v2 prompt = seg_input detections = owl_v2(prompt, image) # Step 3: Overlay bounding boxes on the image image_with_bboxes = overlay_bounding_boxes(image, detections) # Prepare annotations for AnnotatedImage output annotations = [] for detection in detections: label = detection['label'] score = detection['score'] bbox = detection['bbox'] x1, y1, x2, y2 = bbox # Convert normalized coordinates to pixel coordinates height, width = image.shape[:2] x1, y1, x2, y2 = int(x1*width), int(y1*height), int(x2*width), int(y2*height) annotations.append(((x1, y1, x2, y2), f"{label} {score:.2f}")) # Convert image to numpy array if it's not already if isinstance(image_with_bboxes, Image.Image): image_with_bboxes = np.array(image_with_bboxes) return (image_with_bboxes, annotations) @weave.op() def detect_object_dino(image, seg_input, debug: bool = True): """ Detects a brain tumor in the given image and returns the annotated image. Parameters: image: The input image (as numpy array provided by Gradio). seg_input: The segmentation input (not used in this function, but required for Gradio). debug (bool): Flag to enable logging for debugging purposes. Returns: tuple: (numpy array of image, list of (label, (x1, y1, x2, y2)) tuples) """ # Step 2: Detect brain tumor using grounding_dino prompt = seg_input detections = grounding_dino(prompt, image) # Step 3: Overlay bounding boxes on the image image_with_bboxes = overlay_bounding_boxes(image, detections) # Prepare annotations for AnnotatedImage output annotations = [] for detection in detections: label = detection['label'] score = detection['score'] bbox = detection['bbox'] x1, y1, x2, y2 = bbox # Convert normalized coordinates to pixel coordinates height, width = image.shape[:2] x1, y1, x2, y2 = int(x1*width), int(y1*height), int(x2*width), int(y2*height) annotations.append(((x1, y1, x2, y2), f"{label} {score:.2f}")) # Convert image to numpy array if it's not already if isinstance(image_with_bboxes, Image.Image): image_with_bboxes = np.array(image_with_bboxes) return (image_with_bboxes, annotations) @weave.op() def detect_object_florence2(image, seg_input, debug: bool = True): """ Detects a brain tumor in the given image and returns the annotated image. Parameters: image: The input image (as numpy array provided by Gradio). seg_input: The segmentation input (not used in this function, but required for Gradio). debug (bool): Flag to enable logging for debugging purposes. Returns: tuple: (numpy array of image, list of (label, (x1, y1, x2, y2)) tuples) """ # Step 2: Detect brain tumor using florencev2 - NO PROMPT detections = florencev2_object_detection(image) # Step 3: Overlay bounding boxes on the image image_with_bboxes = overlay_bounding_boxes(image, detections) # Prepare annotations for AnnotatedImage output annotations = [] for detection in detections: label = detection['label'] score = detection['score'] bbox = detection['bbox'] x1, y1, x2, y2 = bbox # Convert normalized coordinates to pixel coordinates height, width = image.shape[:2] x1, y1, x2, y2 = int(x1*width), int(y1*height), int(x2*width), int(y2*height) annotations.append(((x1, y1, x2, y2), f"{label} {score:.2f}")) # Convert image to numpy array if it's not already if isinstance(image_with_bboxes, Image.Image): image_with_bboxes = np.array(image_with_bboxes) return (image_with_bboxes, annotations) def handle_model_summary(model_name): model_summary, error_message = get_model_summary(model_name) if error_message: return error_message, "" return model_summary, "" INTRO_TEXT="""# 🔬🧠 OmniScience -- Agentic Imaging Analysis 🤖🧫 - these are the results from the base non-finetuned models """ with gr.Blocks(theme="sudeepshouche/minimalist") as demo: gr.Markdown(INTRO_TEXT) with gr.Tab("Object Detection - Owl V2"): with gr.Row(): with gr.Column(): image = gr.Image(type="numpy") seg_input = gr.Text(label="Entities to Segment/Detect") with gr.Column(): annotated_image = gr.AnnotatedImage(label="Output") seg_btn = gr.Button("Submit") examples = [ ["./examples/BloodImage_00099_jpg.rf.0a65e56401cdd71253e7bc04917c3558.jpg", "detect blood cell"], ["./examples/15_242_212_25_25_jpg.rf.f6bbadf4260dd2c1f5b4ace1b09b0a1b.jpg", "detect liver disease"], ["./examples/194_jpg.rf.3e3dd592d034bb5ee27a978553819f42.jpg", "detect brain tumor"], ["./examples/239_jpg.rf.3dcc0799277fb78a2ab21db7761ccaeb.jpg", "detect brain tumor"], ["./examples/2871_jpg.rf.3b6eadfbb369abc2b3bcb52b406b74f2.jpg", "detect brain tumor"], ["./examples/2921_jpg.rf.3b952f91f27a6248091e7601c22323ad.jpg", "detect brain tumor"], ] gr.Examples( examples=examples, inputs=[image, seg_input], ) seg_inputs = [ image, seg_input ] seg_outputs = [ annotated_image ] seg_btn.click( fn=detect_object_owlv2, inputs=seg_inputs, outputs=seg_outputs, ) with gr.Tab("Object Detection - DINO"): with gr.Row(): with gr.Column(): image = gr.Image(type="numpy") seg_input = gr.Text(label="Entities to Segment/Detect") with gr.Column(): annotated_image = gr.AnnotatedImage(label="Output") seg_btn = gr.Button("Submit") examples = [ ["./examples/BloodImage_00099_jpg.rf.0a65e56401cdd71253e7bc04917c3558.jpg", "detect blood cell"], ["./examples/15_242_212_25_25_jpg.rf.f6bbadf4260dd2c1f5b4ace1b09b0a1b.jpg", "detect liver disease"], ["./examples/194_jpg.rf.3e3dd592d034bb5ee27a978553819f42.jpg", "detect brain tumor"], ["./examples/239_jpg.rf.3dcc0799277fb78a2ab21db7761ccaeb.jpg", "detect brain tumor"], ["./examples/2871_jpg.rf.3b6eadfbb369abc2b3bcb52b406b74f2.jpg", "detect brain tumor"], ["./examples/2921_jpg.rf.3b952f91f27a6248091e7601c22323ad.jpg", "detect brain tumor"], ] gr.Examples( examples=examples, inputs=[image, seg_input], ) seg_inputs = [ image, seg_input ] seg_outputs = [ annotated_image ] seg_btn.click( fn=detect_object_dino, inputs=seg_inputs, outputs=seg_outputs, ) with gr.Tab("Object Detection - Florence2"): with gr.Row(): with gr.Column(): image = gr.Image(type="numpy") seg_input = gr.Text(label="Entities to Segment/Detect") with gr.Column(): annotated_image = gr.AnnotatedImage(label="Output") seg_btn = gr.Button("Submit") examples = [ ["./examples/BloodImage_00099_jpg.rf.0a65e56401cdd71253e7bc04917c3558.jpg", ""], ["./examples/15_242_212_25_25_jpg.rf.f6bbadf4260dd2c1f5b4ace1b09b0a1b.jpg", ""], ["./examples/194_jpg.rf.3e3dd592d034bb5ee27a978553819f42.jpg", ""], ["./examples/239_jpg.rf.3dcc0799277fb78a2ab21db7761ccaeb.jpg", ""], ["./examples/2871_jpg.rf.3b6eadfbb369abc2b3bcb52b406b74f2.jpg", ""], ["./examples/2921_jpg.rf.3b952f91f27a6248091e7601c22323ad.jpg", ""], ] gr.Examples( examples=examples, inputs=[image, seg_input], ) seg_inputs = [ image, seg_input ] seg_outputs = [ annotated_image ] seg_btn.click( fn=detect_object_florence2, inputs=seg_inputs, outputs=seg_outputs, ) with gr.Tab("Model Explorer"): gr.Markdown("## Retrieve and Display Model Architecture") model_name_input = gr.Textbox(label="Model Name", placeholder="Enter the model name to retrieve its architecture...") vision_examples = gr.Examples( examples=[ ["facebook/sam-vit-huge"], ["google/owlv2-base-patch16-ensemble"], ["IDEA-Research/grounding-dino-base"], ["microsoft/Florence-2-large-ft"], ["google/paligemma-3b-mix-224"], ["llava-hf/llava-v1.6-mistral-7b-hf"], ["vikhyatk/moondream2"], ["microsoft/Phi-3-vision-128k-instruct"], ["HuggingFaceM4/idefics2-8b-chatty"] ], inputs=model_name_input ) model_submit_button = gr.Button("Submit") model_output = gr.Textbox(label="Model Architecture", lines=20, placeholder="Model architecture will appear here...", show_copy_button=True) error_output = gr.Textbox(label="Error", lines=10, placeholder="Exceptions will appear here...", show_copy_button=True) model_submit_button.click(fn=handle_model_summary, inputs=model_name_input, outputs=[model_output, error_output]) if __name__ == "__main__": demo.queue(max_size=10).launch(debug=True)