Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
|
4 |
+
# model_name = "dwojcik/gpt2-large-fine-tuned-context-256"
|
5 |
+
model_name = "gpt2-large"
|
6 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
7 |
+
model.generation_config.temperature = 2.0
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="right")
|
9 |
+
tokenizer.pad_token = tokenizer.eos_token
|
10 |
+
|
11 |
+
def generate_response(user_message):
|
12 |
+
inputs = tokenizer.encode(user_message, return_tensors='pt')
|
13 |
+
outputs = model.generate(inputs, max_length=150, num_return_sequences=1)
|
14 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
15 |
+
return response
|
16 |
+
|
17 |
+
def user(user_message, history):
|
18 |
+
return gr.update(value="", interactive=False), history + [[user_message, None]]
|
19 |
+
|
20 |
+
def bot(history):
|
21 |
+
user_message = history[-1][0]
|
22 |
+
bot_message = generate_response(user_message)
|
23 |
+
history[-1][1] = bot_message
|
24 |
+
return history
|
25 |
+
|
26 |
+
with gr.Blocks() as demo:
|
27 |
+
gr.Markdown("""
|
28 |
+
# GPT-PTZE
|
29 |
+
This chatbot utilizes a fine-tuned GPT-2 large model from OpenAI to generate contextually relevant responses based on user input. It was trained on large corpus of data from Przegląd Elektrotechniczny.""")
|
30 |
+
chatbot = gr.Chatbot()
|
31 |
+
msg = gr.Textbox(label="Your input")
|
32 |
+
clear = gr.Button("Clear")
|
33 |
+
|
34 |
+
response = msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
|
35 |
+
bot, chatbot, chatbot
|
36 |
+
)
|
37 |
+
response.then(lambda: gr.update(interactive=True), None, [msg], queue=False)
|
38 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
39 |
+
|
40 |
+
demo.queue()
|
41 |
+
demo.launch(server_name="0.0.0.0")
|