from fastai.vision.all import * import gradio as gr def is_glaucoma(x): return x[6] == 'g' learn = load_learner('model2.pkl') categories = ('Glaucoma', 'not Glaucoma') def classify_image(img): pred,idx,probs = learn.predict(img) return dict(zip(categories, map(float,probs))) image = gr.components.Image(height=192, width=192) label = gr.components.Label() examples = ['glaucoma.jpg', 'not glaucoma.jpg'] intf=gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples) intf.launch(inline=False)