Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import shlex | |
import subprocess | |
import gradio as gr | |
import spaces | |
import torch | |
from diffusers import DiffusionPipeline | |
from gradio_client import Client, file | |
subprocess.run( | |
shlex.split( | |
"pip install wheel/diff_gaussian_rasterization-0.0.0-cp310-cp310-linux_x86_64.whl" | |
) | |
) | |
TMP_DIR = "/tmp" | |
os.makedirs(TMP_DIR, exist_ok=True) | |
image_pipeline = DiffusionPipeline.from_pretrained( | |
"dylanebert/imagedream", | |
custom_pipeline="dylanebert/multi-view-diffusion", | |
torch_dtype=torch.float16, | |
trust_remote_code=True, | |
).to("cuda") | |
splat_pipeline = DiffusionPipeline.from_pretrained( | |
"dylanebert/LGM", | |
custom_pipeline="dylanebert/LGM", | |
torch_dtype=torch.float16, | |
trust_remote_code=True, | |
).to("cuda") | |
def run(input_image): | |
input_image = input_image.astype("float32") / 255.0 | |
images = image_pipeline( | |
"", input_image, guidance_scale=5, num_inference_steps=30, elevation=0 | |
) | |
gaussians = splat_pipeline(images) | |
output_ply_path = os.path.join(TMP_DIR, "output.ply") | |
splat_pipeline.save_ply(gaussians, output_ply_path) | |
return output_ply_path | |
_TITLE = """LGM Mini""" | |
_DESCRIPTION = """ | |
<div> | |
A lightweight version of <a href="https://huggingface.co/spaces/ashawkey/LGM">LGM: Large Multi-View Gaussian Model for High-Resolution 3D Content Creation</a>. | |
To convert to mesh, download the output splat and visit [splat-to-mesh](https://huggingface.co/spaces/dylanebert/splat-to-mesh). | |
</div> | |
""" | |
css = """ | |
#duplicate-button { | |
margin: auto; | |
color: white; | |
background: #1565c0; | |
border-radius: 100vh; | |
} | |
""" | |
block = gr.Blocks(title=_TITLE, css=css) | |
with block: | |
gr.DuplicateButton( | |
value="Duplicate Space for private use", elem_id="duplicate-button" | |
) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("# " + _TITLE) | |
gr.Markdown(_DESCRIPTION) | |
with gr.Row(variant="panel"): | |
with gr.Column(scale=1): | |
input_image = gr.Image(label="image", type="numpy") | |
button_gen = gr.Button("Generate") | |
with gr.Column(scale=1): | |
output_splat = gr.Model3D(label="3D Gaussians") | |
button_gen.click( | |
fn=run, inputs=[input_image], outputs=[output_splat] | |
) | |
gr.Examples( | |
examples=[ | |
"data_test/frog_sweater.jpg", | |
"data_test/bird.jpg", | |
"data_test/boy.jpg", | |
"data_test/cat_statue.jpg", | |
"data_test/dragontoy.jpg", | |
"data_test/gso_rabbit.jpg", | |
], | |
inputs=[input_image], | |
outputs=[output_splat], | |
fn=lambda x: run(input_image=x), | |
cache_examples=True, | |
label="Image-to-3D Examples", | |
) | |
block.queue().launch(debug=True, share=True) | |