import gradio as gr from fastai.vision.all import load_learner learner = load_learner('saved_model/beaverdam.pkl') categories = ('Beaver Dam', 'Not a Beaver Dam') def is_it_a_beaver_dam(input_img): pred, idx, probs = learner.predict(input_img) return f'{pred} {dict(zip(categories, map(float, probs)))}' demo = gr.Interface(fn=is_it_a_beaver_dam, inputs=gr.Image(shape=(200, 200)), outputs=gr.Label()) demo.launch()