Agri-Tech / app.py
eaedk's picture
check without if main
f922fb0
import gradio as gr
import pandas as pd
import os
import pickle
from datetime import datetime
from sklearn import set_config
set_config(transform_output="pandas")
# PAGE CONFIG
# page_icon = "πŸͺ΄"
# Setup variables and constants
# datetime.now().strftime('%d-%m-%Y _ %Hh %Mm %Ss')
DIRPATH = os.path.dirname(os.path.realpath(__file__))
tmp_dir = os.path.join(DIRPATH, "src", "assets", "tmp",)
# os.system(f'rm -vf {tmp_dir}/*.csv')
tmp_df_fp = os.path.join(
tmp_dir, f"history_{datetime.now().strftime('%d-%m-%Y')}.csv")
ml_core_fp = os.path.join(DIRPATH, "src", "assets",
"ml", "crop_recommandation2.pkl")
init_df = pd.DataFrame(
{
"N": [],
"P": [],
"K": [],
"temperature": [],
"humidity": [],
"ph": [],
"rainfall": [],
}
)
# FUNCTIONS
def load_ml_components(fp):
"Load the ml component to re-use in app"
with open(fp, "rb") as f:
object = pickle.load(f)
return object
def setup(fp):
"Setup the required elements like files, models, global variables, etc"
# history frame
if not os.path.exists(fp):
df_history = init_df.copy()
else:
df_history = pd.read_csv(fp)
df_history.to_csv(fp, index=False)
return df_history
def select_categorical_widget(col_index, col_name, encoder):
"""This function will return the right widget to use for each categorical feature
"""
categories = encoder.categories_[col_index].tolist()
n_unique = len(categories)
# print(
# f"[Info] unique categories for feature {col_name} ({type(categories)}) are : {categories}")
if n_unique == 2:
print(
f"[Info] unique categories for feature '{col_index}' {col_name} ({type(categories)}) are : {categories}")
widget = gr.Checkbox(label=f"Enter {col_name}", value=categories)
elif n_unique <= 5:
widget = gr.Radio(label=f"Enter {col_name}", choices=categories)
else:
widget = gr.Dropdown(label=f"Enter {col_name}", choices=categories)
return widget
def make_prediction(*args):
"""Function that takes values from fields to make 1-by-1 prediction
"""
print(
f"[Info] input args of the function {args} ")
raw = {k: [val if not isinstance(val, list) else val[0]]
for val, k in zip(args, num_cols+cat_cols)}
print(
f"[Info] input modified a bit {raw}\n")
df_input = pd.DataFrame(raw)
global df_history
# print(f"\n[Info] Input information as dataframe: \n{df_input.to_string()}")
df_input.drop_duplicates(inplace=True, ignore_index=True)
print(f"\n[Info] Input with duplicated rows: \n{df_input.to_string()}")
df_input_num, df_input_cat = None, None
if len(cat_cols) > 0:
df_input_cat = df_input[cat_cols].copy()
if cat_imputer:
df_input_cat = cat_imputer.transform(df_input_cat)
if encoder:
df_input_cat = encoder.transform(df_input_cat)
if len(num_cols) > 0:
df_input_num = df_input[num_cols].copy()
if num_imputer:
df_input_num = num_imputer.transform(df_input_num)
if scaler:
df_input_num = scaler.transform(df_input_num)
df_input_ok = pd.concat([df_input_num, df_input_cat], axis=1)
prediction_output = model.predict_proba(df_input_ok)
output = model.predict_proba(df_input_ok)
# store confidence score/ probability for the predicted class
confidence_score = output.max(axis=-1)
df_input["confidence score"] = confidence_score
# get index of the predicted class
predicted_idx = output.argmax(axis=-1)
# store index then replace by the matching label
df_input["predicted crop"] = predicted_idx
predicted_label = df_input["predicted crop"].replace(idx_to_labels)
df_input["predicted crop"] = predicted_label
print(
f"[Info] Prediction output (of type '{type(prediction_output)}') from passed input: {prediction_output} of shape {prediction_output.shape}")
# print(f"[Info] Prediction: {prediction_output}")
# df_input['prediction'] = prediction_output
print(
f"\n[Info] output information as dataframe: \n{df_input.to_string()}")
df_history = pd.concat([df_history, df_input], ignore_index=True).drop_duplicates(
ignore_index=True, keep='last')
df_history.to_csv(tmp_df_fp, index=False, )
return df_input
def download():
return gr.File.update(label="History File",
visible=True,
value=tmp_df_fp)
def hide_download():
return gr.File.update(label="History File",
visible=False)
# Setup execution
ml_components_dict = load_ml_components(fp=ml_core_fp)
num_cols = [
"N",
"P",
"K",
"temperature",
"humidity",
"ph",
"rainfall",
]
cat_cols = ml_components_dict['cat_cols'] if 'cat_cols' in ml_components_dict else [
]
num_imputer = ml_components_dict['num_imputer'].set_output(transform="pandas") if (
'num_cols' in ml_components_dict and 'num_imputer' in ml_components_dict) else None
cat_imputer = ml_components_dict['cat_imputer'].set_output(transform="pandas") if (
'cat_cols' in ml_components_dict and 'cat_imputer' in ml_components_dict) else None
scaler = ml_components_dict['scaler'].set_output(
transform="pandas") if 'scaler' in ml_components_dict else None
encoder = ml_components_dict['encoder'] if 'encoder' in ml_components_dict else None
model = ml_components_dict['model']
labels = ml_components_dict['labels'] if 'labels' in ml_components_dict else []
idx_to_labels = {i: l for (i, l) in enumerate(labels)}
# end2end_pipeline = ml_components_dict['pipeline'] if 'pipeline' in ml_components_dict else None
print(f"\n[Info] ML components loaded: {list(ml_components_dict.keys())}")
df_history = setup(tmp_df_fp)
# APP Interface
# Main page
demo_inputs = []
with gr.Blocks() as demo:
gr.Markdown('''<img class="center" src="https://www.verdict.co.uk/wp-content/uploads/2018/12/Agri-tech.jpg" width="60%" height="60%">
<style>
.center {
display: block;
margin-left: auto;
margin-right: auto;
width: 50%;
}
</style>''')
gr.Markdown('''<center><h1> πŸš€ Agri-Tech App πŸš€ </h1><center>''')
gr.Markdown('''
This is a ML API for classification of crop to plant on a land regarding some features
''')
with gr.Row():
for i in range(0, init_df.shape[1],):
demo_inputs.append(gr.Number(label=f"Enter {num_cols[i]}"))
# with gr.Row():
# for i in range(0,init_df.shape[1], multiple_of):
# gr.Number(label=f"Enter {num_cols[i]}")
# gr.Number(label=f"Enter {num_cols[i+1]}")
# # gr.Number(label=f"Enter {num_cols[i+2]}")
output = gr.Dataframe(df_history)
btn_predict = gr.Button("Predict")
btn_predict.click(fn=make_prediction, inputs=demo_inputs, outputs=output)
file_obj = gr.File(label="History File",
visible=False
)
btn_download = gr.Button("Download")
btn_download.click(fn=download, inputs=[], outputs=file_obj)
output.change(fn=hide_download, inputs=[], outputs=file_obj)
# second demo
# num_inputs = [gr.Number(label=f"Enter {col}") for col in num_cols]
# cat_inputs = [select_categorical_widget(col_index=i, col_name=col, encoder=encoder) for i, col in enumerate(cat_cols)]
# inputs = num_inputs + cat_inputs
# demo = gr.Interface(
# make_prediction,
# inputs,
# "dataframe", # "number"
# examples=[
# # [2, "cat", ["Japan", "Pakistan"], "park", ["ate", "swam"], True],
# ]
# )
demo.launch(
debug=True
)#share=True,