import gradio as gr import pandas as pd import os import pickle from datetime import datetime from sklearn import set_config set_config(transform_output="pandas") # PAGE CONFIG # page_icon = "ðŠī" # Setup variables and constants # datetime.now().strftime('%d-%m-%Y _ %Hh %Mm %Ss') DIRPATH = os.path.dirname(os.path.realpath(__file__)) tmp_dir = os.path.join(DIRPATH, "src", "assets", "tmp",) # os.system(f'rm -vf {tmp_dir}/*.csv') tmp_df_fp = os.path.join( tmp_dir, f"history_{datetime.now().strftime('%d-%m-%Y')}.csv") ml_core_fp = os.path.join(DIRPATH, "src", "assets", "ml", "crop_recommandation2.pkl") init_df = pd.DataFrame( { "N": [], "P": [], "K": [], "temperature": [], "humidity": [], "ph": [], "rainfall": [], } ) # FUNCTIONS def load_ml_components(fp): "Load the ml component to re-use in app" with open(fp, "rb") as f: object = pickle.load(f) return object def setup(fp): "Setup the required elements like files, models, global variables, etc" # history frame if not os.path.exists(fp): df_history = init_df.copy() else: df_history = pd.read_csv(fp) df_history.to_csv(fp, index=False) return df_history def select_categorical_widget(col_index, col_name, encoder): """This function will return the right widget to use for each categorical feature """ categories = encoder.categories_[col_index].tolist() n_unique = len(categories) # print( # f"[Info] unique categories for feature {col_name} ({type(categories)}) are : {categories}") if n_unique == 2: print( f"[Info] unique categories for feature '{col_index}' {col_name} ({type(categories)}) are : {categories}") widget = gr.Checkbox(label=f"Enter {col_name}", value=categories) elif n_unique <= 5: widget = gr.Radio(label=f"Enter {col_name}", choices=categories) else: widget = gr.Dropdown(label=f"Enter {col_name}", choices=categories) return widget def make_prediction(*args): """Function that takes values from fields to make 1-by-1 prediction """ print( f"[Info] input args of the function {args} ") raw = {k: [val if not isinstance(val, list) else val[0]] for val, k in zip(args, num_cols+cat_cols)} print( f"[Info] input modified a bit {raw}\n") df_input = pd.DataFrame(raw) global df_history # print(f"\n[Info] Input information as dataframe: \n{df_input.to_string()}") df_input.drop_duplicates(inplace=True, ignore_index=True) print(f"\n[Info] Input with duplicated rows: \n{df_input.to_string()}") df_input_num, df_input_cat = None, None if len(cat_cols) > 0: df_input_cat = df_input[cat_cols].copy() if cat_imputer: df_input_cat = cat_imputer.transform(df_input_cat) if encoder: df_input_cat = encoder.transform(df_input_cat) if len(num_cols) > 0: df_input_num = df_input[num_cols].copy() if num_imputer: df_input_num = num_imputer.transform(df_input_num) if scaler: df_input_num = scaler.transform(df_input_num) df_input_ok = pd.concat([df_input_num, df_input_cat], axis=1) prediction_output = model.predict_proba(df_input_ok) output = model.predict_proba(df_input_ok) # store confidence score/ probability for the predicted class confidence_score = output.max(axis=-1) df_input["confidence score"] = confidence_score # get index of the predicted class predicted_idx = output.argmax(axis=-1) # store index then replace by the matching label df_input["predicted crop"] = predicted_idx predicted_label = df_input["predicted crop"].replace(idx_to_labels) df_input["predicted crop"] = predicted_label print( f"[Info] Prediction output (of type '{type(prediction_output)}') from passed input: {prediction_output} of shape {prediction_output.shape}") # print(f"[Info] Prediction: {prediction_output}") # df_input['prediction'] = prediction_output print( f"\n[Info] output information as dataframe: \n{df_input.to_string()}") df_history = pd.concat([df_history, df_input], ignore_index=True).drop_duplicates( ignore_index=True, keep='last') df_history.to_csv(tmp_df_fp, index=False, ) return df_input def download(): return gr.File.update(label="History File", visible=True, value=tmp_df_fp) def hide_download(): return gr.File.update(label="History File", visible=False) # Setup execution ml_components_dict = load_ml_components(fp=ml_core_fp) num_cols = [ "N", "P", "K", "temperature", "humidity", "ph", "rainfall", ] cat_cols = ml_components_dict['cat_cols'] if 'cat_cols' in ml_components_dict else [ ] num_imputer = ml_components_dict['num_imputer'].set_output(transform="pandas") if ( 'num_cols' in ml_components_dict and 'num_imputer' in ml_components_dict) else None cat_imputer = ml_components_dict['cat_imputer'].set_output(transform="pandas") if ( 'cat_cols' in ml_components_dict and 'cat_imputer' in ml_components_dict) else None scaler = ml_components_dict['scaler'].set_output( transform="pandas") if 'scaler' in ml_components_dict else None encoder = ml_components_dict['encoder'] if 'encoder' in ml_components_dict else None model = ml_components_dict['model'] labels = ml_components_dict['labels'] if 'labels' in ml_components_dict else [] idx_to_labels = {i: l for (i, l) in enumerate(labels)} # end2end_pipeline = ml_components_dict['pipeline'] if 'pipeline' in ml_components_dict else None print(f"\n[Info] ML components loaded: {list(ml_components_dict.keys())}") df_history = setup(tmp_df_fp) # APP Interface # Main page demo_inputs = [] with gr.Blocks() as demo: gr.Markdown(''' ''') gr.Markdown('''