Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoModelForSequenceClassification | |
from transformers import AutoTokenizer, AutoConfig | |
import numpy as np | |
from scipy.special import softmax | |
# Setup | |
model_path = f"GhylB/Sentiment_Analysis_DistilBERT" | |
tokenizer = AutoTokenizer.from_pretrained(model_path) | |
config = AutoConfig.from_pretrained(model_path) | |
model = AutoModelForSequenceClassification.from_pretrained(model_path) | |
# Functions | |
# Preprocess text (username and link placeholders) | |
def preprocess(text): | |
new_text = [] | |
for t in text.split(" "): | |
t = '@user' if t.startswith('@') and len(t) > 1 else t | |
t = 'http' if t.startswith('http') else t | |
new_text.append(t) | |
return " ".join(new_text) | |
def sentiment_analysis(text): | |
text = preprocess(text) | |
# PyTorch-based models | |
encoded_input = tokenizer(text, return_tensors='pt') | |
output = model(**encoded_input) | |
scores_ = output[0][0].detach().numpy() | |
scores_ = softmax(scores_) | |
# Format output dict of scores | |
labels = ['Negative', 'Neutral', 'Positive'] | |
scores = {l: float(s) for (l, s) in zip(labels, scores_)} | |
return scores | |
demo = gr.Interface( | |
fn=sentiment_analysis, | |
inputs=gr.Textbox(placeholder="Copy and paste/Write a tweet here..."), | |
outputs="text", | |
interpretation="default", | |
examples=[["What's up with the vaccine"], | |
["Covid cases are increasing fast!"], | |
["Covid has been invented by Mavis"], | |
["I'm going to party this weekend"], | |
["Covid is hoax"]], | |
title="Tutorial : Sentiment Analysis App", | |
description="This Application assesses if a twitter post relating to vaccinations is positive, neutral, or negative.", ) | |
if __name__ == "__main__": | |
demo.launch(server_name="0.0.0.0", server_port=7860) # 8080 | |