import gradio as gr from transformers import AutoModelForSequenceClassification from transformers import AutoTokenizer, AutoConfig import numpy as np from scipy.special import softmax # Setup model_path = f"GhylB/Sentiment_Analysis_DistilBERT" tokenizer = AutoTokenizer.from_pretrained(model_path) config = AutoConfig.from_pretrained(model_path) model = AutoModelForSequenceClassification.from_pretrained(model_path) # Functions # Preprocess text (username and link placeholders) def preprocess(text): new_text = [] for t in text.split(" "): t = '@user' if t.startswith('@') and len(t) > 1 else t t = 'http' if t.startswith('http') else t new_text.append(t) return " ".join(new_text) def sentiment_analysis(text): text = preprocess(text) # PyTorch-based models encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) scores_ = output[0][0].detach().numpy() scores_ = softmax(scores_) # Format output dict of scores labels = ['Negative', 'Neutral', 'Positive'] scores = {l: float(s) for (l, s) in zip(labels, scores_)} return scores demo = gr.Interface( fn=sentiment_analysis, inputs=gr.Textbox(placeholder="Copy and paste/Write a tweet here..."), outputs="text", interpretation="default", examples=[["What's up with the vaccine"], ["Covid cases are increasing fast!"], ["Covid has been invented by Mavis"], ["I'm going to party this weekend"], ["Covid is hoax"]], title="Tutorial : Sentiment Analysis App", description="This Application assesses if a twitter post relating to vaccinations is positive, neutral, or negative.", ) if __name__ == "__main__": demo.launch(server_name="0.0.0.0", server_port=7860) # 8080 __