Spaces:
Sleeping
Sleeping
Upload folder using huggingface_hub
Browse files- app.py +30 -12
- requirements.txt +0 -0
app.py
CHANGED
@@ -1,35 +1,53 @@
|
|
1 |
import os
|
|
|
|
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
import numpy as np
|
5 |
from transformers import pipeline
|
6 |
from PIL import Image
|
7 |
|
8 |
-
|
9 |
depth_estimator = pipeline(task="depth-estimation", model="Intel/dpt-hybrid-midas")
|
10 |
|
|
|
|
|
|
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
out = depth_estimator(input_image)
|
14 |
|
15 |
-
#
|
16 |
prediction = torch.nn.functional.interpolate(
|
17 |
out["predicted_depth"].unsqueeze(1),
|
18 |
-
size=input_image.size[::-1],
|
19 |
mode="bicubic",
|
20 |
align_corners=False,
|
21 |
)
|
22 |
|
23 |
-
#
|
24 |
output = prediction.squeeze().numpy()
|
25 |
formatted = (output * 255 / np.max(output)).astype("uint8")
|
|
|
|
|
26 |
depth = Image.fromarray(formatted)
|
27 |
return depth
|
28 |
|
29 |
-
|
30 |
-
iface = gr.Interface(
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
from typing import Any
|
3 |
+
|
4 |
import gradio as gr
|
5 |
import torch
|
6 |
import numpy as np
|
7 |
from transformers import pipeline
|
8 |
from PIL import Image
|
9 |
|
10 |
+
# Load the depth estimation model from Hugging Face Transformers
|
11 |
depth_estimator = pipeline(task="depth-estimation", model="Intel/dpt-hybrid-midas")
|
12 |
|
13 |
+
def launch(input_image: Image.Image) -> Image.Image:
|
14 |
+
"""
|
15 |
+
Process an input image to estimate its depth map.
|
16 |
|
17 |
+
Args:
|
18 |
+
input_image: An image object as received from the Gradio interface.
|
19 |
+
|
20 |
+
Returns:
|
21 |
+
A PIL Image object representing the depth map.
|
22 |
+
"""
|
23 |
+
# Generate depth estimation from the input image
|
24 |
out = depth_estimator(input_image)
|
25 |
|
26 |
+
# Resize the prediction to match the input image size
|
27 |
prediction = torch.nn.functional.interpolate(
|
28 |
out["predicted_depth"].unsqueeze(1),
|
29 |
+
size=input_image.size[::-1], # PIL images use width x height, whereas torch uses height x width
|
30 |
mode="bicubic",
|
31 |
align_corners=False,
|
32 |
)
|
33 |
|
34 |
+
# Normalize the prediction to be in the range [0, 255]
|
35 |
output = prediction.squeeze().numpy()
|
36 |
formatted = (output * 255 / np.max(output)).astype("uint8")
|
37 |
+
|
38 |
+
# Convert the numpy array back to a PIL image
|
39 |
depth = Image.fromarray(formatted)
|
40 |
return depth
|
41 |
|
42 |
+
# Define the Gradio interface
|
43 |
+
iface = gr.Interface(
|
44 |
+
fn=launch,
|
45 |
+
inputs=gr.inputs.Image(type='pil'),
|
46 |
+
outputs=gr.outputs.Image(type='pil'),
|
47 |
+
title="Depth Estimation",
|
48 |
+
description="Upload an image to estimate its depth map."
|
49 |
+
)
|
50 |
+
|
51 |
+
# Launch the Gradio app with sharing option enabled
|
52 |
+
if __name__ == "__main__":
|
53 |
+
iface.launch(share=True)
|
requirements.txt
ADDED
File without changes
|